Tunable Crystallinity and Charge Transfer in Two-Dimensional G-Quadruplex Organic Frameworks
Corresponding Author
Prof. Yi-Lin Wu
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorDr. N. Scott Bobbitt
Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL, USA
Search for more papers by this authorJenna L. Logsdon
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorNatalia E. Powers-Riggs
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorJordan N. Nelson
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorXiaolong Liu
Applied Physics Graduate Program, Northwestern University, Evanston, IL, USA
Search for more papers by this authorTimothy C. Wang
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorProf. Randall Q. Snurr
Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL, USA
Search for more papers by this authorProf. Joseph T. Hupp
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorProf. Omar K. Farha
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
Search for more papers by this authorProf. Mark C. Hersam
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Applied Physics Graduate Program, Northwestern University, Evanston, IL, USA
Search for more papers by this authorCorresponding Author
Prof. Michael R. Wasielewski
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorCorresponding Author
Prof. Yi-Lin Wu
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorDr. N. Scott Bobbitt
Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL, USA
Search for more papers by this authorJenna L. Logsdon
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorNatalia E. Powers-Riggs
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorJordan N. Nelson
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorXiaolong Liu
Applied Physics Graduate Program, Northwestern University, Evanston, IL, USA
Search for more papers by this authorTimothy C. Wang
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorProf. Randall Q. Snurr
Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL, USA
Search for more papers by this authorProf. Joseph T. Hupp
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorProf. Omar K. Farha
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
Search for more papers by this authorProf. Mark C. Hersam
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Applied Physics Graduate Program, Northwestern University, Evanston, IL, USA
Search for more papers by this authorCorresponding Author
Prof. Michael R. Wasielewski
Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
Search for more papers by this authorGraphical Abstract
Crystal packing on a rugged surface: non-planar molecular building blocks restrict the interlayer slippage and modulate dispersion interactions for the formation of 2D G-quadruplex organic frameworks. Charge-transfer complexes can be obtained when size-matched building blocks of similar nonplanarity are co-crystallized.
Abstract
DNA G-quadruplex structures were recently discovered to provide reliable scaffolding for two-dimensional organic frameworks due to the strong hydrogen-bonding ability of guanine. Herein, 2,7-diaryl pyrene building blocks with high HOMO energies and large optical gaps are incorporated into G-quadruplex organic frameworks. The adjustable substitution on the aryl groups provides an opportunity to elucidate the framework formation mechanism; molecular non-planarity is found to be beneficial for restricting interlayer slippage, and the framework crystallinity is highest when intermolecular interaction and non-planarity strike a fine balance. When guanine-functionalized pyrenes are co-crystallized with naphthalene diimide, charge-transfer (CT) complexes are obtained. The photophysical properties of the pyrene-only and CT frameworks are characterized by UV/Vis and steady-state and time-resolved photoluminescence spectroscopies, and by EPR spectroscopy for the CT complex frameworks.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201800230-sup-0001-misc_information.pdf2.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. K. Mandal, J. Mahmood, J. B. Baek, ChemNanoMat 2017, 3, 373–391;
- 1bN. Huang, P. Wang, D. L. Jiang, Nat. Rev. Mater. 2016, 1, 16068;
- 1cJ. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453–465.
- 2
- 2aA. Karmakar, R. Illathvalappil, B. Anothumakkool, A. Sen, P. Samanta, A. V. Desai, S. Kurungot, S. K. Ghosh, Angew. Chem. Int. Ed. 2016, 55, 10667–10671; Angew. Chem. 2016, 128, 10825–10829;
- 2bY. F. Han, Y. X. Yuan, H. B. Wang, Molecules 2017, 22, 266.
- 3
- 3aY. B. Zhang, J. Su, H. Furukawa, Y. F. Yun, F. Gandara, A. Duong, X. D. Zou, O. M. Yaghi, J. Am. Chem. Soc. 2013, 135, 16336–16339;
- 3bG. Q. Lin, H. M. Ding, R. F. Chen, Z. K. Peng, B. S. Wang, C. Wang, J. Am. Chem. Soc. 2017, 139, 8705–8709;
- 3cQ. R. Fang, J. H. Wang, S. Gu, R. B. Kaspar, Z. B. Zhuang, J. Zheng, H. X. Guo, S. L. Qiu, Y. S. Yan, J. Am. Chem. Soc. 2015, 137, 8352–8355;
- 3dM. O'Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675–702;
- 3eH. L. Wang, Q. L. Zhu, R. Q. Zou, Q. Xu, Chem 2017, 2, 52–80.
- 4
- 4aD. D. Medina, V. Werner, F. Auras, R. Tautz, M. Dogru, J. Schuster, S. Linke, M. Doblinger, J. Feldmann, P. Knochel, T. Bein, ACS Nano 2014, 8, 4042–4052;
- 4bL. Chen, K. Furukawa, J. Gao, A. Nagai, T. Nakamura, Y. Dong, D. Jiang, J. Am. Chem. Soc. 2014, 136, 9806–9809;
- 4cJ. Guo, Y. H. Xu, S. B. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, S. Seki, S. Irle, M. Hiramoto, J. Gao, D. L. Jiang, Nat. Commun. 2013, 4, 2736.
- 5
- 5aP. Sozzani, A. Comotti, R. Simonutti, T. Meersmann, J. W. Logan, A. Pines, Angew. Chem. Int. Ed. 2000, 39, 2695–2698;
10.1002/1521-3773(20000804)39:15<2695::AID-ANIE2695>3.0.CO;2-M CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 2807–2810;
- 5bP. Sozzani, S. Bracco, A. Comotti, L. Ferretti, R. Simonutti, Angew. Chem. Int. Ed. 2005, 44, 1816–1820; Angew. Chem. 2005, 117, 1850–1854.
- 6E. Jin, M. Asada, Q. Xu, S. Dalapati, M. A. Addicoat, M. A. Brady, H. Xu, T. Nakamura, T. Heine, Q. Chen, D. Jiang, Science 2017, 357, 673–676.
- 7
- 7aD. D. Medina, M. L. Petrus, A. N. Jumabekov, J. T. Margraf, S. Weinberger, J. M. Rotter, T. Clark, T. Bein, ACS Nano 2017, 11, 2706–2713;
- 7bX. S. Ding, J. Guo, X. A. Feng, Y. Honsho, J. D. Guo, S. Seki, P. Maitarad, A. Saeki, S. Nagase, D. L. Jiang, Angew. Chem. Int. Ed. 2011, 50, 1289–1293; Angew. Chem. 2011, 123, 1325–1329;
- 7cM. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Lobermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 2014, 136, 17802–17807;
- 7dS. B. Jin, T. Sakurai, T. Kowalczyk, S. Dalapati, F. Xu, H. Wei, X. Chen, J. Gao, S. Seki, S. Irle, D. L. Jiang, Chem. Eur. J. 2014, 20, 14608–14613;
- 7eS. Wan, F. Gandara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. F. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094–4097;
- 7fS. B. Jin, M. Supur, M. Addicoat, K. Furukawa, L. Chen, T. Nakamura, S. Fukuzumi, S. Irle, D. L. Jiang, J. Am. Chem. Soc. 2015, 137, 7817–7827.
- 8P. J. Waller, F. Gandara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053–3063.
- 9Y. L. Wu, N. E. Horwitz, K. S. Chen, D. A. Gomez-Gualdron, N. S. Luu, L. Ma, T. C. Wang, M. C. Hersam, J. T. Hupp, O. K. Farha, R. Q. Snurr, M. R. Wasielewski, Nat. Chem. 2017, 9, 466–472.
- 10
- 10aJ. T. Davis, G. P. Spada, Chem. Soc. Rev. 2007, 36, 296–313;
- 10bE. Fadaei, M. Martin-Arroyo, M. Tafazzoli, D. Gonzalez-Rodriguez, Org. Lett. 2017, 19, 460–463;
- 10cD. González-Rodríguez, P. G. A. Janssen, R. Martín-Rapún, I. De Cat, S. De Feyter, A. P. H. J. Schenning, E. W. Meijer, J. Am. Chem. Soc. 2010, 132, 4710–4719.
- 11Y. L. Qiao, J. Zhang, W. Xu, D. B. Zhu, Tetrahedron 2011, 67, 3395–3405.
- 12Y. Ofir, A. Zelichenok, S. Yitzchaik, J. Mater. Chem. 2006, 16, 2142–2149.
- 13
- 13aF. Auras, L. Ascherl, A. H. Haldmioun, J. T. Margraf, F. C. Hanusch, S. Reuter, D. Bessinger, M. Doblinger, C. Hettstedt, K. Karaghiosoff, S. Herbert, P. Knochel, T. Clark, T. Bein, J. Am. Chem. Soc. 2016, 138, 16703–16710;
- 13bL. Ascherl, T. Sick, J. T. Margraf, S. H. Lapidus, M. Calik, C. Hettstedt, K. Karaghiosoff, M. Doblinger, T. Clark, K. W. Chapman, F. Auras, T. Bein, Nat. Chem. 2016, 8, 310–316.
- 14
- 14aS. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104;
- 14bF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305;
- 14cJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 15A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024–10035.
- 16A. K. Rappe, W. A. Goddard, J. Phys. Chem. 1991, 95, 3358–3363.
- 17S. Dalapati, M. Addicoat, S. B. Jin, T. Sakurai, J. Gao, H. Xu, S. Irle, S. Seki, D. L. Jiang, Nat. Commun. 2015, 6, 7786.
- 18K. E. Brown, A. P. N. Singh, Y.-L. Wu, L. Ma, A. K. Mishra, B. T. Phelan, R. M. Young, F. D. Lewis, M. R. Wasielewski, Faraday Discuss. 2017, https://doi.org/10.1039/C1037FD00186J.
- 19
- 19aA. Yagi, G. Venkataramana, Y. Segawa, K. Itami, Chem. Commun. 2014, 50, 957–959;
- 19bT. Iwamoto, E. Kayahara, N. Yasuda, T. Suzuki, S. Yamago, Angew. Chem. Int. Ed. 2014, 53, 6430–6434; Angew. Chem. 2014, 126, 6548–6552.
- 20H. A. Staab, D. Q. Zhang, C. Krieger, Liebigs Ann./Recueil 1997, 1551–1556.
10.1002/jlac.199719970735 Google Scholar
- 21
- 21aM. D. Gujrati, N. S. S. Kumar, A. S. Brown, B. Captain, J. N. Wilson, Langmuir 2011, 27, 6554–6558;
- 21bM. Y. Yeh, H. C. Lin, Phys. Chem. Chem. Phys. 2014, 16, 24216–24222.
- 22
- 22aM. A. Rohrdanz, K. M. Martins, J. M. Herbert, J. Chem. Phys. 2009, 130, 054112;
- 22bR. Baer, E. Livshits, U. Salzner, Annu. Rev. Phys. Chem. 2010, 61, 85–109.
- 23
- 23aU. Heinen, T. Berthold, G. Kothe, E. Stavitski, T. Galili, H. Levanon, G. Wiederrecht, M. R. Wasielewski, J. Phys. Chem. A 2002, 106, 1933–1937;
- 23bO. W. Howarth, G. K. Fraenkel, J. Chem. Phys. 1970, 52, 6258–6267.
- 24A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Leonard, M. D. Allendorf, Science 2014, 343, 66–69.
- 25
- 25aC. F. Leong, B. Chan, T. B. Faust, D. M. D′Alessandro, Chem. Sci. 2014, 5, 4724–4728;
- 25bZ. Guo, D. K. Panda, M. A. Gordillo, A. Khatun, H. Wu, W. Zhou, S. Saha, ACS Appl. Mater. Interfaces 2017, 9, 32413–32417.
- 26
- 26aT. J. Lepage, R. Breslow, J. Am. Chem. Soc. 1987, 109, 6412–6421;
- 26bL. Y. Chiang, R. B. Upasani, D. P. Goshorn, J. W. Swirczewski, Chem. Mater. 1992, 4, 394–397.
- 27G. H. V. Bertrand, V. K. Michaelis, T. C. Ong, R. G. Griffin, M. Dinca, Proc. Natl. Acad. Sci. USA 2013, 110, 4923–4928.
- 28A. S. Tayi, A. K. Shveyd, A. C. H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, S. I. Stupp, Nature 2012, 488, 485–489.