para-Selective C−H Borylation of (Hetero)Arenes by Cooperative Iridium/Aluminum Catalysis
Lichen Yang
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorProf. Dr. Kazuhiko Semba
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yoshiaki Nakao
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorLichen Yang
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorProf. Dr. Kazuhiko Semba
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yoshiaki Nakao
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorGraphical Abstract
Collect. Select. Reflect: para-Selective C−H borylation of benzamide and pyridine adducts is controlled by a combination of iridium and bulky aluminum-based Lewis acid catalysts. Variously substituted (hetero)arylboronates were prepared, which are versatile synthetic intermediates for complex multi-substituted aromatic compounds.
Abstract
para-Selective C−H borylation of benzamides and pyridines has been achieved by cooperative iridium/aluminum catalysis. A combination of iridium catalysts commonly employed for arene C−H borylation and bulky aluminum-based Lewis acid catalysts provides an unprecedented strategy for controlling the regioselectivity of C−H borylation to give variously substituted (hetero)arylboronates, which are versatile synthetic intermediates for complex multi-substituted aromatic compounds.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201701238-sup-0001-misc_information.pdf14.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For recent reviews, see:
- 1aJ. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51, 8960–9009; Angew. Chem. 2012, 124, 9092–9142;
- 1bY. Kuninobu, S. Sueki, Synthesis 2015, 3823–3845.
- 2For a recent review, see: Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107–1295.
- 3For recent reviews, see:
- 3aJ. Yang, Org. Biomol. Chem. 2015, 13, 1930–1941;
- 3bA. Dey, S. Agasti, D. Maiti, Org. Biomol. Chem. 2016, 14, 5440–5453.
- 4
- 4aG. Brasche, J. Garcia-Fortanet, S. L. Buchwald, Org. Lett. 2008, 10, 2207–2210;
- 4bX. Wang, D. Leow, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 13864–13867;
- 4cZ. Wu, F. Luo, S. Chen, Z. Li, H. Xiang, X. Zhou, Chem. Commun. 2013, 49, 7653–7655;
- 4dH. Xu, M. Shang, H.-X. Dai, J.-Q. Yu, Org. Lett. 2015, 17, 3830–3833.
- 5
- 5aC. L. Ciana, R. J. Phipps, J. R. Brandt, F.-M. Meyer, M. J. Gaunt, Angew. Chem. Int. Ed. 2011, 50, 458–462; Angew. Chem. 2011, 123, 478–482;
- 5bL. Marchetti, A. Kantak, R. Davis, B. Deboef, Org. Lett. 2015, 17, 358–361;
- 5cB. Berzina, I. Sokolovs, E. Suna, ACS Catal. 2015, 5, 7008–7014;
- 5dA. Pialat, J. Bergès, A. Sabourin, R. Vinck, B. Liégault, M. Taillefer, Chem. Eur. J. 2015, 21, 10014–10018;
- 5eI. Sokolovs, E. Suna, J. Org. Chem. 2016, 81, 371–379;
- 5fS.-K. Xiang, J.-M. Li, H. Huang, C. Feng, H.-L. Ni, X.-Z. Chen, B.-Q. Wang, K.-Q. Zhao, P. Hu, C. Redshaw, Adv. Synth. Catal. 2015, 357, 3435–3440.
- 6
- 6aZ. Yu, B. Ma, M. Chen, H. Wu, L. Liu, J. Zhang, J. Am. Chem. Soc. 2014, 136, 6904–6907;
- 6bY. Liu, Z. Yu, J. Z. Zhang, L. Liu, F. Xia, J. Zhang, Chem. Sci. 2016, 7, 1988–1995.
- 7
- 7aX. Guo, C.-J. Li, Org. Lett. 2011, 13, 4977–4979;
- 7bA. van der Werf, N. Selander, Org. Lett. 2015, 17, 6210–6213.
- 8C. Cheng, J. F. Hartwig, Science 2014, 343, 853–857.
- 9Y. Saito, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137, 5193–5198.
- 10
- 10aS. Bag, T. Patra, A. Modak, A. Deb, S. Maity, U. Dutta, A. Dey, R. Kancherla, A. Maji, A. Hazra, M. Bera, D. Maiti, J. Am. Chem. Soc. 2015, 137, 11888–11891;
- 10bT. Patra, S. Bag, R. Kancherla, A. Mondal, A. Dey, S. Pimparkar, S. Agasti, A. Modak, D. Maiti, Angew. Chem. Int. Ed. 2016, 55, 7751–7755; Angew. Chem. 2016, 128, 7882–7886.
- 11
- 11aC. N. Iverson, M. R. Smith III, J. Am. Chem. Soc. 1999, 121, 7696–7697;
- 11bJ. Y. Cho, C. N. Iverson, M. R. Smith III, J. Am. Chem. Soc. 2000, 122, 12868–12869;
- 11cJ. Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka, Jr., M. R. Smith III, Science 2002, 295, 305–308;
- 11dT. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 390–391;
- 11eT. Ishiyama, J. Takagi, J. F. Hartwig, N. Miyaura, Angew. Chem. Int. Ed. 2002, 41, 3056–3058;
10.1002/1521-3773(20020816)41:16<3056::AID-ANIE3056>3.0.CO;2-# CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 3182–3184. For a general review, see:
- 11fI. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890–931.
- 12
- 12aJ. F. Hartwig, Chem. Soc. Rev. 2011, 40, 1992–2002;
- 12bH. Tajuddin, P. Harrisson, B. Bitterlich, J. C. Collings, N. Sim, A. S. Batsanov, M. S. Cheung, S. Kawamorita, A. C. Maxwell, L. Shukla, J. Morris, Z. Lin, T. B. Marder, P. G. Steel, Chem. Sci. 2012, 3, 3505–3515.
- 13
- 13aS. Kawamorita, H. Ohmiya, K. Hara, A. Fukuoka, M. Sawamura, J. Am. Chem. Soc. 2009, 131, 5058–5059;
- 13bT. Ishiyama, H. Isou, T. Kikuchi, N. Miyaura, Chem. Commun. 2010, 46, 159–161;
- 13cH. Itoh, T. Kikuchi, T. Ishiyama, N. Miyaura, Chem. Lett. 2011, 40, 1007–1008;
- 13dS. Kawamorita, T. Miyazaki, H. Ohmiya, T. Iwai, M. Sawamura, J. Am. Chem. Soc. 2011, 133, 19310–19313;
- 13eP. C. Roosen, V. A. Kallepalli, B. Chattopadhyay, D. A. Singleton, R. E. Maleczka, Jr., M. R. Smith III, J. Am. Chem. Soc. 2012, 134, 11350–11353;
- 13fY. Kuninobu, T. Iwanaga, T. Omura, K. Takai, Angew. Chem. Int. Ed. 2013, 52, 4431–4434; Angew. Chem. 2013, 125, 4527–4530;
- 13gB. Ghaffari, S. M. Preshlock, D. L. Plattner, R. J. Staples, P. E. Maligres, S. W. Krska, R. E. Maleczka, Jr., M. R. Smith III, J. Am. Chem. Soc. 2014, 136, 14345–14348;
- 13hI. Sasaki, T. Amou, H. Ito, T. Ishiyama, Org. Biomol. Chem. 2014, 12, 2041c2044;
- 13iL. V. A. Hale, K. A. McGarry, M. A. Ringgold, T. B. Clark, Organometallics 2015, 34, 51–55;
- 13jH.-L. Li, Y. Kuninobu, M. Kanai, Angew. Chem. Int. Ed. 2017, 56, 1495–1499; Angew. Chem. 2017, 129, 1517–1521. For a recent review, see:
- 13kA. Ros, R. Fernández, J. M. Lassaletta, Chem. Soc. Rev. 2014, 43, 3229–3243.
- 14
- 14aY. Kuninobu, H. Ida, M. Nishi, M. Kanai, Nat. Chem. 2015, 7, 712–717;
- 14bR. Bisht, B. Chattopadhyay, J. Am. Chem. Soc. 2016, 138, 84–87;
- 14cH. J. Davis, M. T. Mihai, R. J. Phipps, J. Am. Chem. Soc. 2016, 138, 12759–12762.
- 15
- 15aV. Bagutski, A. Del Grosso, J. A. Carrillo, I. A. Cade, M. D. Helm, J. R. Lawson, P. J. Singleton, S. A. Solomon, T. Marcelli, M. J. Ingleson, J. Am. Chem. Soc. 2013, 135, 474–487;
- 15bA. Del Grosso, J. A. Carrillo, M. J. Ingleson, Chem. Commun. 2015, 51, 2878–2881.
- 16
- 16aY. Nakao, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2008, 130, 2448–2449;
- 16bY. Nakao, Y. Yamada, N. Kashihara, T. Hiyama, J. Am. Chem. Soc. 2010, 132, 13666–13668;
- 16cC.-C. Tsai, W.-C. Shih, C.-H. Fang, C.-Y. Li, T.-G. Ong, G. P. A. Yap, J. Am. Chem. Soc. 2010, 132, 11887–11889;
- 16dS. Okumura, S. Tang, T. Saito, K. Semba, S. Sakaki, Y. Nakao, J. Am. Chem. Soc. 2016, 138, 14699–14704.
- 17T. M. Boller, J. M. Murphy, M. Hapke, T. Ishiyama, N. Miyaura, J. F. Hartwig, J. Am. Chem. Soc. 2005, 127, 14263–14278.
- 18For related discussions from DFT calculations, see:
- 18aA. G. Green, P. Liu, C. A. Merlic, K. N. Houk, J. Am. Chem. Soc. 2014, 136, 4575–4583;
- 18bJ. Jover, F. Maseras, Organometallics 2016, 35, 3221–3226.
- 19
- 19aK. B. Starowieyski, S. Pasynkiewicz, M. Skowrońska-Ptasińska, J. Organomet. Chem. 1975, 90, C 43–C44. For applications of MAD in organic synthesis, see:
- 19bS. Saito, H. Yamamoto, Chem. Commun. 1997, 1585–1592.
- 20
- 20aJ. Takagi, K. Sato, J. F. Hartwig, T. Ishiyama, N. Miyaura, Tetrahedron Lett. 2002, 43, 5649–5651;
- 20bI. A. I. Mkhalid, D. N. Coventry, D. Albesa-Jove, A. S. Batsanov, J. A. K. Howard, R. N. Perutz, T. B. Marder, Angew. Chem. Int. Ed. 2006, 45, 489–491; Angew. Chem. 2006, 118, 503–505;
- 20cS. A. Sadler, H. Tajuddin, I. A. I. Mkhalid, A. S. Batsanov, D. Albesa-Jove, M. S. Cheung, A. C. Maxwell, L. Shukla, B. Roberts, D. C. Blakemore, Z. Lin, T. B. Marder, P. G. Steel, Org. Biomol. Chem. 2014, 12, 7318–7327.
- 21G. Doledec, D. Commereuc, J. Mol. Catal. A 2000, 161, 125–140.
- 22M. A. Larsen, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 4287–4299.