Synthesis of Rationally Halogenated Buckybowls by Chemoselective Aromatic C−F Bond Activation
Olena Papaianina
Department of Organic Chemistry, Friedrich Alexander University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen, Germany
Search for more papers by this authorVladimir A. Akhmetov
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, 119991 Moscow, Russia
Search for more papers by this authorDr. Alexey A. Goryunkov
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, 119991 Moscow, Russia
Search for more papers by this authorDr. Frank Hampel
Department of Organic Chemistry, Friedrich Alexander University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen, Germany
Search for more papers by this authorDr. Frank W. Heinemann
Department of Inorganic Chemistry, Friedrich Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
Search for more papers by this authorCorresponding Author
Dr. Konstantin Y. Amsharov
Department of Organic Chemistry, Friedrich Alexander University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen, Germany
Search for more papers by this authorOlena Papaianina
Department of Organic Chemistry, Friedrich Alexander University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen, Germany
Search for more papers by this authorVladimir A. Akhmetov
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, 119991 Moscow, Russia
Search for more papers by this authorDr. Alexey A. Goryunkov
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, 119991 Moscow, Russia
Search for more papers by this authorDr. Frank Hampel
Department of Organic Chemistry, Friedrich Alexander University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen, Germany
Search for more papers by this authorDr. Frank W. Heinemann
Department of Inorganic Chemistry, Friedrich Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
Search for more papers by this authorCorresponding Author
Dr. Konstantin Y. Amsharov
Department of Organic Chemistry, Friedrich Alexander University Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen, Germany
Search for more papers by this authorGraphical Abstract
Efficiency that will bowl you over: The activation of aromatic C−F bonds in the presence of more labile C−Br and C−Cl bonds enabled the fully controlled synthesis of halogenated bowl-shaped polycyclic aromatic hydrocarbons through intramolecular aryl–aryl coupling (see picture). Besides its simplicity and high reproducibility, the technique provides access to halogenated bowl-shaped systems that are not accessible by other methods.
Abstract
Halogenated buckybowls or bowl-shaped polycyclic aromatic hydrocarbons (BS-PAHs) are key building blocks for the “bottom-up” synthesis of various carbon-based nanomaterials with outstanding potential in different fields of technology. The current state of the art provides quite a limited number of synthetic pathways to BS-PAHs; moreover, none of these approaches show high selectivity and tolerance of functional groups. Herein we demonstrate an effective route to BS-PAHs that includes directed intramolecular aryl–aryl coupling through C−F bond activation. The coupling conditions were found to be completely tolerant toward aromatic C−Br and C−Cl bonds, thus allowing the facile synthesis of rationally halogenated buckybowls with an unprecedented level of selectivity. This finding opens the way to functionalized BS-PAH systems that cannot be obtained by alternative methods.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201700814-sup-0001-misc_information.pdf8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. T. Wu, J. S. Siegel, Chem. Rev. 2006, 106, 4843–4867.
- 2 Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry (Eds.: ), Wiley, Hoboken, 2012.
- 3Y. T. Wu, T. C. Wu, M. K. Chen, H. J. Hsin, Pure Appl. Chem. 2014, 86, 539–544.
- 4A. K. Dutta, A. Linden, L. Zoppi, K. K. Baldridge, J. S. Siegel, Angew. Chem. Int. Ed. 2015, 54, 10792–10796; Angew. Chem. 2015, 127, 10942–10946.
- 5K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, Nat. Chem. 2013, 5, 739–744.
- 6E. A. Jackson, B. D. Steinberg, M. Bancu, A. Wakamiya, L. T. Scott, J. Am. Chem. Soc. 2007, 129, 484–485.
- 7T. Amaya, T. Nakata, T. Hirao, J. Am. Chem. Soc. 2009, 131, 10810–10811.
- 8L. Meng, T. Fujikawa, M. Kuwayama, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2016, 138, 10351–10355.
- 9L. T. Scott, E. A. Jackson, Q. Zhang, B. D. Steinberg, M. Bancu, B. Li, J. Am. Chem. Soc. 2012, 134, 107–110.
- 10C. M. Álvarez, H. Barbero, S. Ferrero, D. Miguel, J. Org. Chem. 2016, 81, 6081–6086.
- 11C. W. Lee, E. C. Liu, Y. T. Wu, J. Org. Chem. 2015, 80, 10446–10456.
- 12E. C. Liu, M. K. Chen, J. Y. Li, Y. T. Wu, Chem. Eur. J. 2015, 21, 4755–4761.
- 13F. Furrer, A. Linden, M. C. Stuparu, Chem. Eur. J. 2013, 19, 13199–13206.
- 14A. Sygula, R. Sygula, P. W. Rabideau, Org. Lett. 2005, 7, 4999–5001.
- 15R.-Q. Lu, Y.-N. Zhou, X.-Y. Yan, K. Shi, Y.-Q. Zheng, M. Luo, X.-C. Wang, J. Pei, H. Xia, L. Zoppi, K. K. Baldridge, J. S. Siegel, X.-Y. Cao, Chem. Commun. 2015, 51, 1681–1684.
- 16A. Sygula, G. Xu, Z. Marcinow, P. W. Rabideau, Tetrahedron 2001, 57, 3637–3644.
- 17A. Mueller, K. Y. Amsharov, M. Jansen, Fullerenes, Nanotubes, Carbon Nanostruct. 2012, 20, 401–404.
- 18A. Mueller, K. Y. Amsharov, M. Jansen, Tetrahedron Lett. 2010, 51, 3221–3225.
- 19A. Mueller, K. Y. Amsharov, Eur. J. Org. Chem. 2012, 6155–6164.
- 20B. Liu, J. Liu, H. B. Li, R. Bhola, E. A. Jackson, L. T. Scott, A. Page, S. Irle, K. Morokuma, C. Zhou, Nano Lett. 2015, 15, 586–595.
- 21K. Y. Amsharov, Phys. Status Solidi B 2015, 252, 2466–2471.
- 22J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, R. Fasel, Nature 2014, 512, 61–64.
- 23X. Yu, J. Zhang, W. Choi, J. Y. Choi, J. M. Kim, L. Gan, Z. Liu, Nano Lett. 2010, 10, 3343–3349.
- 24E. H. Fort, P. M. Donovan, L. T. Scott, J. Am. Chem. Soc. 2009, 131, 16006–16007.
- 25T. J. Hill, R. K. Hughes, L. T. Scott, Tetrahedron 2008, 64, 11360–11369.
- 26A. Mueller, K. Y. Amsharov, Eur. J. Org. Chem. 2015, 3053–3056.
- 27V. M. Tsefrikas, L. T. Scott, Chem. Rev. 2006, 106, 4868–4884.
- 28K. T. Rim, M. Siaj, S. Xiao, M. Myers, V. D. Carpentier, L. Liu, C. Su, M. L. Steigerwald, M. S. Hybertsen, P. H. McBreen, G. W. Flynn, C. Nuckolls, Angew. Chem. Int. Ed. 2007, 46, 7891–7895; Angew. Chem. 2007, 119, 8037–8041.
- 29N. Abdurakhmanova, A. Mueller, S. Stepanow, S. Rauschenbach, M. Jansen, K. Kern, K. Y. Amsharov, Carbon 2015, 84, 444–447.
- 30K. Amsharov, N. Abdurakhmanova, S. Stepanow, S. Rauschenbach, M. Jansen, K. Kern, Angew. Chem. Int. Ed. 2010, 49, 9392–9396; Angew. Chem. 2010, 122, 9582–9586.
- 31G. Otero, G. Biddau, C. Sánchez-Sánchez, R. Caillard, M. F. López, C. Rogero, F. J. Palomares, N. Cabello, M. A. Basanta, J. Ortega, J. Méndez, A. M. Echavarren, R. Pérez, B. Gómez-Lor, J. A. Martín-Gago, Nature 2008, 454, 865–868.
- 32A. M. Echavarren, B. Gómez-Lor, J. J. González, Ó. de Frutos, Synlett 2003, 0585–0597.
- 33D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174–238.
- 34S. Pascual, P. de Mendoza, A. M. Echavarren, Org. Biomol. Chem. 2007, 5, 2727–2734.
- 35J. Liu, S. Osella, J. Ma, R. Berger, D. Beljonne, D. Schollmeyer, X. Feng, K. Müllen, J. Am. Chem. Soc. 2016, 138, 8364–8367.
- 36T. C. Wu, M. K. Chen, Y. W. Lee, M. Y. Kuo, Y. T. Wu, Angew. Chem. Int. Ed. 2013, 52, 1289–1293; Angew. Chem. 2013, 125, 1327–1331.
- 37T. J. Seiders, K. K. Baldridge, E. L. Elliott, G. H. Grube, J. S. Siegel, J. Am. Chem. Soc. 1999, 121, 7439–7440.
- 38B. M. Schmidt, B. Topolinski, M. Yamada, S. Higashibayashi, M. Shionoya, H. Sakurai, D. Lentz, Chem. Eur. J. 2013, 19, 13872–13880.
- 39O. Allemann, S. Duttwyler, P. Romanato, K. K. Baldridge, J. S. Siegel, Science 2011, 332, 574–577.
- 40K. Fuchibe, Y. Mayumi, N. Zhao, S. Watanabe, M. Yokota, J. Ichikawa, Angew. Chem. Int. Ed. 2013, 52, 7825–7828; Angew. Chem. 2013, 125, 7979–7982.
- 41N. Suzuki, T. Fujita, J. Ichikawa, Org. Lett. 2015, 17, 4984–4987.
- 42N. Suzuki, T. Fujita, K. Yu. Amsharov, J. Ichikawa, Chem. Commun. 2016, 52, 12948–12951.
- 43K. Y. Amsharov, M. A. Kabdulov, M. Jansen, Chem. Eur. J. 2010, 16, 5868–5871.
- 44K. Y. Amsharov, P. Merz, J. Org. Chem. 2012, 77, 5445–5448.
- 45K. Y. Amsharov, M. A. Kabdulov, M. Jansen, Angew. Chem. Int. Ed. 2012, 51, 4594–4597; Angew. Chem. 2012, 124, 4672–4675.
- 46S. N. Spisak, J. Li, A. Y. Rogachev, Z. Wei, O. Papaianina, K. Amsharov, A. V. Rybalchenko, A. A. Goryunkov, M. A. Petrukhina, Organometallics 2016, 35, 3105–3111.