Atomic Layer Deposition of Iron Sulfide and Its Application as a Catalyst in the Hydrogenation of Azobenzenes
Dr. Youdong Shao
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorZheng Guo
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorHao Li
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorDr. Yantao Su
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xinwei Wang
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorDr. Youdong Shao
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorZheng Guo
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorHao Li
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorDr. Yantao Su
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xinwei Wang
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China
Search for more papers by this authorGraphical Abstract
Abstract
The atomic layer deposition (ALD) of iron sulfide (FeSx) is reported for the first time. The deposition process employs bis(N,N′-di-tert-butylacetamidinato)iron(II) and H2S as the reactants and produces fairly pure, smooth, and well-crystallized FeSx thin films following an ideal self-limiting ALD growth behavior. The FeSx films can be uniformly and conformally deposited into deep narrow trenches with aspect ratios as high as 10:1, which highlights the broad applicability of this ALD process for engineering the surface of complex 3D nanostructures in general. Highly uniform nanoscale FeSx coatings on porous γ-Al2O3 powder were also prepared. This compound shows excellent catalytic activity and selectivity in the hydrogenation of azo compounds under mild reaction conditions, demonstrating the promise of ALD FeSx as a catalyst for organic reactions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201700449-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Puthussery, S. Seefeld, N. Berry, M. Gibbs, M. Law, J. Am. Chem. Soc. 2011, 133, 716–719;
- 1bY.-C. Wang, D.-Y. Wang, Y.-T. Jiang, H.-A. Chen, C.-C. Chen, K.-C. Ho, H.-L. Chou, C.-W. Chen, Angew. Chem. Int. Ed. 2013, 52, 6694–6698; Angew. Chem. 2013, 125, 6826–6830;
- 1cN. Berry, M. Cheng, C. L. Perkins, M. Limpinsel, J. C. Hemminger, M. Law, Adv. Energy Mater. 2012, 2, 1124–1135.
- 2
- 2aC. Xu, Y. Zeng, X. Rui, N. Xiao, J. Zhu, W. Zhang, J. Chen, W. Liu, H. Tan, H. H. Hng, Q. Yan, ACS Nano 2012, 6, 4713–4721;
- 2bS.-B. Son, T. A. Yersak, D. M. Piper, S. C. Kim, C. S. Kang, J. S. Cho, S.-S. Suh, Y.-U. Kim, K. H. Oh, S.-H. Lee, Adv. Energy Mater. 2014, 4, 1300961;
- 2cC. Zhu, Y. Wen, P. A. van Aken, J. Maier, Y. Yu, Adv. Funct. Mater. 2015, 25, 2335–2342.
- 3
- 3aD. Kong, J. J. Cha, H. Wang, H. R. Lee, Y. Cui, Energy Environ. Sci. 2013, 6, 3553–3558;
- 3bM. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser, S. Jin, J. Phys. Chem. C 2014, 118, 21347–21356;
- 3cD.-Y. Wang, M. Gong, H.-L. Chou, C.-J. Pan, H.-A. Chen, Y. Wu, M.-C. Lin, M. Guan, J. Yang, C.-W. Chen, Y.-L. Wang, B.-J. Hwang, C.-C. Chen, H. Dai, J. Am. Chem. Soc. 2015, 137, 1587–1592;
- 3dD. Jasion, J. M. Barforoush, Q. Qiao, Y. Zhu, S. Ren, K. C. Leonard, ACS Catal. 2015, 5, 6653–6657.
- 4M. Shen, C. Ruan, Y. Chen, C. Jiang, K. Ai, L. Lu, ACS Appl. Mater. Interfaces 2015, 7, 1207–1218.
- 5A. Roldan, N. Hollingsworth, A. Roffey, H. U. Islam, J. B. M. Goodall, C. R. A. Catlow, J. A. Darr, W. Bras, G. Sankar, K. B. Holt, G. Hogarth, N. H. de Leeuw, Chem. Commun. 2015, 51, 7501–7504.
- 6
- 6aH. Seino, M. Hidai, Chem. Sci. 2011, 2, 847–857;
- 6bT. B. Nguyen, L. Ermolenko, A. Al-Mourabit, J. Am. Chem. Soc. 2013, 135, 118–121.
- 7
- 7aM. R. Gao, Y. F. Xu, J. Jiang, S. H. Yu, Chem. Soc. Rev. 2013, 42, 2986–3017;
- 7bX. Rui, H. Tan, Q. Yan, Nanoscale 2014, 6, 9889–9924.
- 8
- 8aM. Cabán-Acevedo, M. S. Faber, Y. Tan, R. J. Hamers, S. Jin, Nano Lett. 2012, 12, 1977–1982;
- 8bM. Cabán-Acevedo, D. Liang, K. S. Chew, J. P. DeGrave, N. S. Kaiser, S. Jin, ACS Nano 2013, 7, 1731–1739;
- 8cD. R. Cummins, H. B. Russell, J. B. Jasinski, M. Menon, M. K. Sunkara, Nano Lett. 2013, 13, 2423–2430.
- 9
- 9aL. Samad, M. Cabán-Acevedo, M. J. Shearer, K. Park, R. J. Hamers, S. Jin, Chem. Mater. 2015, 27, 3108–3114;
- 9bK. Ramasamy, M. A. Malik, M. Helliwell, F. Tuna, P. O'Brien, Inorg. Chem. 2010, 49, 8495–8503.
- 10C. Marichy, M. Bechelany, N. Pinna, Adv. Mater. 2012, 24, 1017–1032.
- 11
- 11aS. M. George, Chem. Rev. 2010, 110, 111–131;
- 11bR. W. Johnson, A. Hultqvist, S. F. Bent, Mater. Today 2014, 17, 236–246.
- 12
- 12aB. Ahmed, C. Xia, H. N. Alshareef, Nano Today 2016, 11, 250–271;
- 12bX. Meng, X.-Q. Yang, X. Sun, Adv. Mater. 2012, 24, 3589–3615.
- 13B. J. O'Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, G. W. Huber, ACS Catal. 2015, 5, 1804–1825.
- 14
- 14aJ. Lu, B. Fu, M. C. Kung, G. Xiao, J. W. Elam, H. H. Kung, P. C. Stair, Science 2012, 335, 1205–1208;
- 14bC. P. Canlas, J. Lu, N. A. Ray, N. A. Grosso-Giordano, S. Lee, J. W. Elam, R. E. Winans, R. P. Van Duyne, P. C. Stair, J. M. Notestein, Nat. Chem. 2012, 4, 1030–1036;
- 14cJ. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J. DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair, R. Q. Snurr, O. K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2013, 135, 10294–10297;
- 14dS. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005–1009;
- 14eS. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, M. Moskovits, Nat. Nanotechnol. 2013, 8, 247–251.
- 15V. Miikkulainen, M. Leskela, M. Ritala, R. L. Puurunen, J. Appl. Phys. 2013, 113, 021301.
- 16N. P. Dasgupta, X. Meng, J. W. Elam, A. B. F. Martinson, Acc. Chem. Res. 2015, 48, 341–348.
- 17T. L. Gilchrist in Comprehensive Organic Synthesis (Ed.: ), Pergamon, Oxford, 1991, pp. 381–402.
- 18L. G. Benning, R. T. Wilkin, H. L. Barnes, Chem. Geol. 2000, 167, 25–51.
- 19M. Wolthers, L. Charlet, P. R. van Der Linde, D. Rickard, C. H. van Der Weijden, Geochim. Cosmochim. Acta 2005, 69, 3469–3481.
- 20A. F. Guillermet, M. Hillert, B. Jansson, B. Sundman, Metall. Trans. B 1981, 12, 745–754.
- 21H. Li, Y. Gao, Y. Shao, Y. Su, X. Wang, Nano Lett. 2015, 15, 6689–6695.
- 22I. T. Sines, D. D. Vaughn Ii, R. Misra, E. J. Popczun, R. E. Schaak, J. Solid State Chem. 2012, 196, 17–20.
- 23M. Nath, A. Choudhury, A. Kundu, C. N. R. Rao, Adv. Mater. 2003, 15, 2098–2101.