Cation Translocation around Single Polyoxometalate–Organic Hybrid Cluster Regulated by Electrostatic and Cation–π Interactions
Dr. Dong Li
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorZhuonan Liu
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorDr. Jie Song
Department of Chemistry, Emory University, Atlanta, GA, 30322 USA
Search for more papers by this authorHui Li
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorDr. Baofang Zhang
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorDr. Panchao Yin
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorDr. Zhaoxiong Norm Zheng
Department of Chemistry, Lehigh University, Bethlehem, PA, 18015 USA
Search for more papers by this authorProf. Dr. James E. Roberts
Department of Chemistry, Lehigh University, Bethlehem, PA, 18015 USA
Search for more papers by this authorProf. Dr. Mesfin Tsige
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Craig L. Hill
Department of Chemistry, Emory University, Atlanta, GA, 30322 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Tianbo Liu
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorDr. Dong Li
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorZhuonan Liu
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorDr. Jie Song
Department of Chemistry, Emory University, Atlanta, GA, 30322 USA
Search for more papers by this authorHui Li
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorDr. Baofang Zhang
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorDr. Panchao Yin
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorDr. Zhaoxiong Norm Zheng
Department of Chemistry, Lehigh University, Bethlehem, PA, 18015 USA
Search for more papers by this authorProf. Dr. James E. Roberts
Department of Chemistry, Lehigh University, Bethlehem, PA, 18015 USA
Search for more papers by this authorProf. Dr. Mesfin Tsige
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Craig L. Hill
Department of Chemistry, Emory University, Atlanta, GA, 30322 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Tianbo Liu
Department of Polymer Science, The University of Akron, Akron, OH, 44325 USA
Search for more papers by this authorGraphical Abstract
Near and far: Spectroscopic and theoretical studies on the dynamic translocation process of countercations around a polyoxometalate–organic hybrid anionic molecular cluster show that electrostatic interactions and cation–π interactions regulate the position of small countercations around single clusters.
Abstract
We report herein an interesting dynamic translocation process of countercations around one polyoxometalate(POM)–organic hybrid anionic cluster at various concentrations and temperatures. It was found that both electrostatic interactions and cation–π interactions regulate the position of small countercations around single clusters. The dynamic geometry and the symmetry of the hybrid macroions are largely affected by the type of counterions, as shown by nuclear magnetic resonance (NMR) spectroscopy studies and all-atom molecular dynamics simulation. It is also shown that electrostatic interactions dominate over cation–π interactions in determining the locations of the counterions in the current system.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201612008-sup-0001-misc_information.pdf1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Müller-Dethlefs, P. Hobza, Chem. Rev. 2000, 100, 143–167;
- 1bI. Sogami, N. Ise, J. Chem. Phys. 1984, 81, 6320–6332;
- 1cM. Sedlák, E. J. Amis, J. Chem. Phys. 1992, 96, 826–834;
- 1dK. S. Schmitz, M. Lu, N. Singh, D. J. Ramsay, Biopolymers 1984, 23, 1637–1646;
- 1eF. Leroy, P. Miró, J. M. Poblet, C. Bo, J. Bonet Ávalos, J. Phys. Chem. B 2008, 112, 8591–8599;
- 1fA. Chaumont, G. Wipff, Phys. Chem. Chem. Phys. 2008, 10, 6940–6953;
- 1gA. Müller, F. L. Sousa, A. Merca, H. Bögge, P. Miró, J. A. Fernández, J. M. Poblet, C. Bo, Angew. Chem. Int. Ed. 2009, 48, 5934–5937; Angew. Chem. 2009, 121, 6048–6051;
- 1hM. Kanduč, J. Dobnikara, R. Podgornik, Soft Matter 2009, 5, 868–877;
- 1iG. S. Manning, Eur. Phys. J. E 2011, 34, 132.
- 2W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, V. A. Parsegian, Phys. Today 2000, 53, 38–44.
- 3D. E. Draper, D. Grilley, A. M. Soto, Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 221–243.
- 4Y.-H. Wang, D. R. Slochower, P. A. Janmey, Chem. Phys. Lipids 2014, 182, 38–51.
- 5
- 5aM. T. Pope, Heteropoly and Isopoly Oxometalates, 8th ed., Springer, New York, 1983;
10.1007/978-3-662-12004-0 Google Scholar
- 5bD.-L. Long, R. Tsunashima, L. Cronin, Angew. Chem. Int. Ed. 2010, 49, 1736–1758; Angew. Chem. 2010, 122, 1780–1803.
- 6
- 6aM. R. Antonio, M. Nyman, T. M. Anderson, Angew. Chem. Int. Ed. 2009, 48, 6136–6140; Angew. Chem. 2009, 121, 6252–6256;
- 6bP. Yin, D. Li, T. Liu, Isr. J. Chem. 2011, 51, 191–204;
- 6cL. B. Fullmer, P. I. Molina, M. R. Antoniob, M. Nyman, Dalton Trans. 2014, 43, 15295–15299;
- 6dX. López, C. Nieto-Draghi, C. Bo, J. B. Avalos, J. M. Poblet, J. Phys. Chem. A 2005, 109, 1216–1222;
- 6eA. Chaumont, G. Wipff, C. R. Chim. 2012, 15, 107–117;
- 6fX. López, J. J. Carbo, C. Bo, J. M. Poblet, Chem. Soc. Rev. 2012, 41, 7537–7571.
- 7
- 7aJ. M. Pigga, M. L. Kistler, C. Y. Shew, M. R. Antonio, T. Liu, Angew. Chem. Int. Ed. 2009, 48, 6538–6542; Angew. Chem. 2009, 121, 6660–6664;
- 7bT. Liu, Langmuir 2010, 26, 9202–9213;
- 7cT. Liu, M. L. K. Langston, D. Li, J. M. Pigga, C. Pichon, A. M. Todea, A. Müller, Science 2011, 331, 1590–1592;
- 7dP. Yin, D. Li, T. Liu, Chem. Soc. Rev. 2012, 41, 7368–7383;
- 7eP. Yin, Z.-M. Zhang, H. Lv, T. Li, F. Haso, L. Hu, B. Zhang, J. Bacsa, Y. Wei, Y. Gao, Y. Hou, Y.-G. Li, C. L. Hill, E.-B. Wang, T. Liu, Nat. Commun. 2015, 6, 6475;
- 7fZ. Liu, T. Liu, M. Tsige, Sci. Rep. 2016, 6, 26595.
- 8
- 8aD. Li, J. Zhang, K. Landskron, T. Liu, J. Am. Chem. Soc. 2008, 130, 4226–4227;
- 8bD. Li, W. Zhou, K. Landskron, S. Sato, C. J. Kiely, M. Fujita, T. Liu, Angew. Chem. Int. Ed. 2011, 50, 5182–5187; Angew. Chem. 2011, 123, 5288–5293;
- 8cJ. Zhou, P. Yin, L. Hu, F. Haso, T. Liu, Eur. J. Inorg. Chem. 2014, 4593–4599;
- 8dJ. Zhou, P. Yin, Y. Gao, L. Hu, T. Liu, Chem. Eur. J. 2015, 21, 9563–9568;
- 8eP. Yin, Z. Lin, J. Wu, C.-H. Hsu, X. Chen, J. Zhou, P. Lu, S. A. Eghtesadi, X. Yu, S. Z. D. Cheng, T. Liu, Macromolecules 2015, 48, 725–731;
- 8fY. Chu, W. Zhang, X. Lu, G. Mu, B. Zhang, Y. Li, S. Z. Cheng, T. Liu, Chem. Commun. 2016, 52, 8687–8690.
- 9
- 9aD. A. Dougherty, D. A. Stauffer, Science 1990, 250, 1558–1560;
- 9bJ. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303–1324;
- 9cA. S. Mahadevi, G. N. Sastry, Chem. Rev. 2013, 113, 2100–2138;
- 9dD. A. Dougherty, Acc. Chem. Res. 2013, 46, 885–893.
- 10
- 10aJ. P. Gallivan, D. A. Dougherty, Proc. Natl. Acad. Sci. USA 1999, 96, 9459–9464;
- 10bT. W. Craven, M.-K. Cho, N. J. Traaseth, R. Bonneau, K. Kirshenbaum, J. Am. Chem. Soc. 2016, 138, 1543–1550;
- 10cQ. Lu, D. X. Oh, Y. Lee, Y. Jho, D. S. Hwang, H. Zeng, Angew. Chem. Int. Ed. 2013, 52, 3944–3948; Angew. Chem. 2013, 125, 4036–4040.
- 11
- 11aA. Dolbecq, E. Dumas, C. R. Mayer, P. Mialane, Chem. Rev. 2010, 110, 6009–6048;
- 11bM. H. Rosnes, C. Musumeci, C. P. Pradeep, J. S. Mathieson, D.-L. Long, Y.-F. Song, B. Pignataro, R. Cogdell, L. Cronin, J. Am. Chem. Soc. 2010, 132, 15490–15492;
- 11cY. Yan, L. Wu, Isr. J. Chem. 2011, 51, 181–190;
- 11dC. Yvon, A. J. Surman, M. Hutin, J. Alex, B. O. Smith, D.-L. Long, L. Cronin, Angew. Chem. Int. Ed. 2014, 53, 3336–3341; Angew. Chem. 2014, 126, 3404–3409.
- 12
- 12aS. Landsmann, C. Lizandara-Pueyo, S. Polarz, J. Am. Chem. Soc. 2010, 132, 5315–5321;
- 12bD. Li, P. Yin, T. Liu, Dalton Trans. 2012, 41, 2853–2861;
- 12cP. Yin, A. Bayaguud, P. Cheng, F. Haso, L. Hu, J. Wang, D. Vezenov, R. E. Winans, J. Hao, T. Li, Y. Wei, T. Liu, Chem. Eur. J. 2014, 20, 9589–9595;
- 12dJ. Zhou, P. Yin, X. Chen, L. Hu, T. Liu, Chem. Commun. 2015, 51, 15982–15985;
- 12eB. Zhang, C. P. Pradeep, L. Cronin, T. Liu, Chem. Commun. 2015, 51, 8630–8633;
- 12fY. Chu, A. Saad, P. Yin, J. Wu, O. Oms, A. Dolbecq, P. Mialane, T. Liu, Chem. Eur. J. 2016, 22, 11756–11762;
- 12gG. Izzet, B. Abécassis, D. Brouri, M. Piot, B. Matt, S. A. Serapian, C. Bo, A. Proust, J. Am. Chem. Soc. 2016, 138, 5093–5099.
- 13T. D. Vaden, J. M. Lisy, J. Chem. Phys. 2005, 123, 074302.
- 14Y. Cohen, L. Avram, L. Frish, Angew. Chem. Int. Ed. 2005, 44, 520–554; Angew. Chem. 2005, 117, 524–560.