Functional Proteins from Short Peptides: Dayhoff's Hypothesis Turns 50
Dr. M. Luisa Romero Romero
Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorAvigayel Rabin
Current address: Department of Biological Chemistry the Alexander Silberman Inst. of Life Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 91904 Israel
Search for more papers by this authorCorresponding Author
Prof. Dan S. Tawfik
Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. M. Luisa Romero Romero
Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorAvigayel Rabin
Current address: Department of Biological Chemistry the Alexander Silberman Inst. of Life Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 91904 Israel
Search for more papers by this authorCorresponding Author
Prof. Dan S. Tawfik
Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorGraphical Abstract
First and foremost: Margaret Dayhoff's 1966 hypothesis on the origin of proteins is now an accepted model for the emergence of large, globular, functional proteins from short, simple peptides. However, the fundamental question of how the first protein(s) emerged still stands. The tools and hypotheses pioneered by Dayhoff, and the over 65 million protein sequences and 12 000 structures known today, enable those who follow in her footsteps to address this question.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201609977-sup-0001-misc_information.pdf226.4 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. M. Longo, J. Lee, M. Blaber, Proc. Natl. Acad. Sci. USA 2013, 110, 2135–2139.
- 2S. Kamtekar, J. M. Schiffer, H. Xiong, J. M. Babik, M. H. Hecht, Science 1993, 262, 1680–1685.
- 3D. R. Corey, M. A. Phillips, Proc. Natl. Acad. Sci. USA 1994, 91, 4106–4109.
- 4
- 4aW. Gilbert, Nature 1986, 319, 618;
- 4bJ. Söding, A. N. Lupas, Bioessays 2003, 25, 837–846.
- 5K. O. Kopec, A. N. Lupas, PLoS One 2013, 8, e 77074.
- 6S. Chen, B. H. Krinsky, M. Long, Nat. Rev. Genet. 2013, 14, 645–660.
- 7M. B. Oakley, G. E. Kimball, J. Chem. Phys. 1949, 17, 706–717.
- 8
- 8aL. Hunt, Bull. Math. Biol. 1984, 46, 467–472;
- 8bB. J. Strasser in eLS, Wiley, Chichester, 2012.
- 9H. M. Martinez, Bull. Math. Biol. 1984, 46, 461–465.
- 10
- 10aM. O. Dayhoff, J. Theor. Biol. 1965, 8, 97;
- 10bM. O. Dayhoff, Precambrian Res. 1983, 20, 299–318;
- 10cM. O. Dayhoff, W. C. Barker, L. T. Hunt, Methods Enzymol. 1983, 91, 524–545.
- 11M. O. Dayhoff, N. B. R. Foundation, Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington, DC, 1979.
- 12R. M. Schwartz, M. O. Dayhoff, Science 1978, 199, 395–403.
- 13M. O. Dayhoff, P. J. Mclaughlin, W. C. Barker, L. T. Hunt, Naturwissenschaften 1975, 62, 154–161.
- 14R. V. Eck, M. O. Dayhoff, Science 1966, 152, 363.
- 15I. Bertini, A. Donaire, B. A. Feinberg, C. Luchinat, M. Piccioli, H. P. Yuan, Eur. J. Biochem. 1995, 232, 192–205.
- 16
- 16aE. Otaka, T. Ooi, J. Mol. Evol. 1989, 29, 246–254;
- 16bB. K. Davis, Prog. Biophys. Mol. Biol. 2002, 79, 77–133;
- 16cJ. Meyer, J. Biol. Inorg. Chem. 2008, 13, 157–170.
- 17
- 17aM. L. Antonkine, M. S. Koay, B. Epel, C. Breitenstein, O. Gopta, W. Gartner, E. Bill, W. Lubitz, Biochim. Biophys. Acta Bioenerg. 2009, 1787, 995–1008;
- 17bB. R. Gibney, S. E. Mulholland, F. Rabanal, P. L. Dutton, Proc. Natl. Acad. Sci. USA 1996, 93, 15041–15046.
- 18
- 18aD. Graur, Y. Zheng, N. Price, R. B. Azevedo, R. A. Zufall, E. Elhaik, Genome Biol. Evol. 2013, 5, 578–590;
- 18bG. A. Petsko, EMBO Rep. 2009, 10, 1282.
- 19
- 19aS. Balaji, Curr. Opin. Struct. Biol. 2015, 32, 156–166;
- 19bC. A. Orengo, D. T. Jones, J. M. Thornton, Nature 1994, 372, 631–634;
- 19cW. R. Taylor, A. S. Aszódi, Protein geometry, classification, topology and symmetry: a computational analysis of structure, Institute of Physics, Bristol, 2005.
- 20
- 20aG. Villar, A. W. Wilber, A. J. Williamson, P. Thiara, J. P. Doye, A. A. Louis, M. N. Jochum, A. C. Lewis, E. D. Levy, Phys. Rev. Lett. 2009, 102, 118106;
- 20bC. P. Jones, A. R. Ferre-D′Amare, Trends Biochem. Sci. 2015, 40, 211–220.
- 21Z. S. Juo, T. K. Chiu, P. M. Leiberman, I. Baikalov, A. J. Berk, R. E. Dickerson, J. Mol. Biol. 1996, 261, 239–254.
- 22J. Monod, J. Wyman, J. P. Changeux, J. Mol. Biol. 1965, 12, 88–118.
- 23
- 23aA. Broom, A. C. Doxey, Y. D. Lobsanov, L. G. Berthin, D. R. Rose, P. L. Howell, B. J. McConkey, E. M. Meiering, Structure 2012, 20, 161–171;
- 23bM. Blaber, J. Lee, Curr. Opin. Struct. Biol. 2012, 22, 442–450;
- 23cT. J. Brunette, F. Parmeggiani, P. S. Huang, G. Bhabha, D. C. Ekiert, S. E. Tsutakawa, G. L. Hura, J. A. Tainer, D. Baker, Nature 2015, 528, 580;
- 23dA. R. Voet, H. Noguchi, C. Addy, D. Simoncini, D. Terada, S. Unzai, S. Y. Park, K. Y. Zhang, J. R. Tame, Proc. Natl. Acad. Sci. USA 2014, 111, 15102–15107.
- 24C. Davidovich, M. Belousoff, I. Wekselman, T. Shapira, M. Krupkin, E. Zimmerman, A. Bashan, A. Yonath, Isr. J. Chem. 2010, 50, 29–35.
- 25
- 25aJ. Lee, M. Blaber, Proc. Natl. Acad. Sci. USA 2011, 108, 126–130;
- 25bS. Coquille, A. Filipovska, T. Chia, L. Rajappa, J. P. Lingford, M. F. Razif, S. Thore, O. Rackham, Nat. Commun. 2014, 5, 5729;
- 25cR. G. Smock, I. Yadid, O. Dym, J. Clarke, D. S. Tawfik, Cell 2016, 164, 476–486.
- 26I. N. Berezovsky, A. Y. Grosberg, E. N. Trifonov, FEBS Lett. 2000, 466, 283–286.
- 27A. Goncearenco, I. N. Berezovsky, Phys. Biol. 2015, 12, 045002.
- 28A. G. Cochran, N. J. Skelton, M. A. Starovasnik, Proc. Natl. Acad. Sci. USA 2001, 98, 5578–5583.
- 29
- 29aF. J. Blanco, G. Rivas, L. Serrano, Nat. Struct. Biol. 1994, 1, 584–590;
- 29bV. Munoz, P. A. Thompson, J. Hofrichter, W. A. Eaton, Nature 1997, 390, 196–199.
- 30T. Machida, S. Dutt, N. Winssinger, Angew. Chem. Int. Ed. 2016, 55, 8595–8598.
- 31
- 31aM. P. Friedmann, V. Torbeev, V. Zelenay, A. Sobol, J. Greenwald, R. Riek, PLoS One 2015, 10, e 0143948;
- 31bC. Rufo, Y. Moroz, O. Moroz, O. Makhlynets, P. Gosavi, J. Stohr, T. Smith, X. Z. Hu, W. DeGrado, I. Korendovych, Protein Sci. 2015, 24, 188.
- 32C. M. Rufo, Y. S. Moroz, O. V. Moroz, J. Stohr, T. A. Smith, X. Z. Hu, W. F. DeGrado, I. V. Korendovych, Nat. Chem. 2014, 6, 303–309.
- 33O. V. Makhlynets, P. M. Gosavi, I. V. Korendovych, Angew. Chem. Int. Ed. 2016, 55, 9017–9020.
- 34G. Caetano-Anollés, M. W. Wang, D. Caetano-Anollés, J. E. Mittenthal, Biochem. J. 2009, 417, 621–637.
- 35
- 35aV. Alva, J. Soding, A. N. Lupas, Elife 2015, 4, e 09410;
- 35bP. Laurino, A. Toth-Petroczy, R. Meana-Paneda, W. Lin, D. G. Truhlar, D. S. Tawfik, PLoS Biol. 2016, 14, e 1002396.
- 36A. N. Lupas, C. P. Ponting, R. B. Russell, J. Struct. Biol. 2001, 134, 191–203.
- 37A. Tóth-Petróczy, D. S. Tawfik, Curr. Opin. Struct. Biol. 2014, 26, 131–138.
- 38A. R. Fersht, Nat. Rev. Mol. Cell Biol. 2008, 9, 650–654.
- 39A. Goncearenco, I. N. Berezovsky, Bioinformatics 2010, 26, i 497–i503.
- 40N. Nagano, C. A. Orengo, J. M. Thornton, J. Mol. Biol. 2002, 321, 741–765.
- 41B. Hocker, J. Claren, R. Sterner, Proc. Natl. Acad. Sci. USA 2004, 101, 16448–16453.