Microemulsions: Options To Expand the Synthesis of Inorganic Nanoparticles
Dr. Silke Wolf
Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Claus Feldmann
Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
Search for more papers by this authorDr. Silke Wolf
Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Claus Feldmann
Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
Search for more papers by this authorGraphical Abstract
Abstract
Microemulsions (MEs) are ideal for obtaining high-quality inorganic nanoparticles. As thermodynamically stable systems with a nanometer-sized droplet phase that serves as a nanoreactor, MEs have obvious advantages for the synthesis of nanoparticles. MEs also have disadvantages, such as their complexity as multicomponent systems, the low amount of obtainable nanoparticles, their limited thermal stability, the fact that hydrolyzable or oxidizable compounds are often excluded from synthesis, the partly elaborate separation of nanoparticles, as well as the removal of surface-adhered surfactants subsequent to synthesis. This Review presents some strategies to further expand the options of ME-based synthesis of inorganic nanoparticles. This comprises the crystallization of nanoparticles in “high-temperature MEs”, the synthesis of hollow nanospheres, the use of hydrogen peroxide or liquid ammonia as the polar droplet phase, and the synthesis of base metals and nitrides in MEs.
References
- 1The American Chemical Society (ACS), Program package Scifinder, Washington, 2016.
- 2Reviews:
- 2aL. M. Prince, J. Soc. Cosmet. Chem. 1970, 21, 193;
- 2bK. Shinoda, S. Frigerg, Adv. Colloid Interface Sci. 1975, 4, 281;
- 2cS. L. Holt, J. Dispersion Sci. Technol. 1980, 1, 423;
- 2dJ. Sjöblom, R. Lindberg, S. E. Friberg, Adv. Colloid Interface Sci. 1996, 65, 125;
- 2eM. Rosoff, Prog. Surf. Membr. Sci. 1978, 12, 405;
- 2fH. D. Dörfler, Grenzflächen und kolloid-disperse Systeme: Physik und Chemie, Springer, Berlin, 2002;
10.1007/978-3-642-15326-6 Google Scholar
- 2gM. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, J. R. Leis, Curr. Opin. Colloid Interface Sci. 2004, 9, 264;
- 2hM. Schwarze, T. Pogrzeba, I. Volovych, R. Schomäcker, Catal. Sci. Technol. 2015, 5, 24;
- 2iC. Bravo-Díaz, L. S. Romstedt, C. Liu, S. Losada-Barreiro, M. J. Pastoriza-Gallego, X. Gao, Q. Gu, G. Krishnan, V. Sánchez-Paz, Y. Zhang, A. A. Dar, Langmuir 2015, 31, 8961.
- 3Reviews:
- 3aS. N. Khadzhiev, K. M. Kadiev, G. P. Yampolskaya, M. K. Kadieva, Adv. Colloid Interface Sci. 2013, 197, 132;
- 3bM. Sanchez-Dominguez, K. Pemartin, M. Boutonnet, Curr. Opin. Colloid Interface Sci. 2012, 17, 297;
- 3cA. K. Ganguli, A. Ganguly, S. Vaidya, Chem. Soc. Rev. 2010, 39, 474;
- 3dA. K. Ganguli, T. Ahmad, S. Vaidya, J. Ahmed, Pure Appl. Chem. 2008, 80, 2451;
- 3eM. P. Pileni, J. Exp. Nanosci. 2006, 1, 13.
- 4T. P. Hoar, J. H. Schulman, Nature 1943, 152, 102.
- 5
- 5aP. A. Winsor, Trans. Faraday Soc. 1948, 44, 376;
- 5bP. A. Winsor, Trans. Faraday Soc. 1950, 46, 762.
- 6S. R. Palit, V. A. Moghe, B. Biswas, Trans. Faraday Soc. 1959, 55, 463.
- 7J. H. Schulman, W. Stoeckenius, L. M. Price, J. Phys. Chem. 1959, 63, 1677.
- 8
- 8aK. Osseo-Asare, F. J. Arriagada, Ceram. Trans. 1990, 12, 3;
- 8bJ. D. Hopwood, S. Mann, Chem. Mater. 1997, 9, 1819;
- 8cJ. Eastoe, B. Warne, Curr. Opin. Colloid Interface Sci. 1996, 1, 800.
- 9
- 9aJ. Eastoe, C. Yan, A. Mohamed, Curr. Opin. Colloid Interface Sci. 2012, 17, 266;
- 9bJ. Eastoe, M. J. Hollamby, L. Hudson, Adv. Colloid Interface Sci. 2006, 128–130, 5.
- 10S. Sharma, N. Pal, P. K. Chowdhury, S. Sen, A. K. Ganguli, J. Am. Chem. Soc. 2012, 134, 19677.
- 11
- 11aM. de Dios, F. Barroso, C. Tojo, M. C. Blanco, M. A. Lopez-Quintela, Colloids Surf. A 2005, 270–271, 83;
- 11bM. A. López-Quintela, C. Tojo, M. C. Blanco, L. Garcia Rio, J. R. Leis, Curr. Opin. Colloid Interface Sci. 2004, 9, 264;
- 11cC. Tojo, M. C. Blanco, F. Rivadulla, M. A. Lopez-Quintela, Langmuir 1997, 13, 1970.
- 12
- 12aC. Salzemann, J. Urban, I. Lisiecki, M. A. Pileni, Adv. Funct. Mater. 2005, 15, 1277;
- 12bD. Ingert, M. A. Pileni, Adv. Funct. Mater. 2001, 11, 136;
- 12cM. Maillard, L. Motte, M. P. Pileni, Adv. Mater. 2001, 13, 200;
- 12dM. P. Pileni, Adv. Colloid Interface Sci. 1993, 46, 139.
- 13Reviews:
- 13aE. Salvetova, T. Muthny, Household Pers. Care Today 2014, 9, 46;
- 13bC. Rodríguez-Abreu, A. Vila, Curr. Top. Med. Chem. 2014, 14, 747;
- 13cC. Solans, H. Kunieda, Industrial Applications of Microemulsions, Marcel Dekker, New York, 1997;
- 13dP. Kumar, K. L. Mittal, Handbook of Microemulsions: Science and Technology, Marcel Dekker, New York, 1999;
- 13eM. J. Schwuger, K. Stickdorn, R. Schomaecker, Chem. Rev. 1995, 95, 849.
- 14>Recent examples:
- 14aL. Chiappisi, L. Noirez, M. Gradzielski, J. Colloid Interface Sci. 2016, 473, 52;
- 14bA. Boza Troncoso, E. Acosta, J. Colloid Interface Sci. 2016, 466, 400;
- 14cT. J. Wooster, D. Labbett, P. Sanguansri, H. Andrews, Soft Matter 2016, 12, 1425;
- 14dJ. Marcus, D. Touraud, S. Prevost, O. Diat, T. Zemb, W. Kunz, Phys. Chem. Chem. Phys. 2015, 17, 32528;
- 14eR. J. Hickey, T. M. Gillard, M. T. Irwin, T. P. Lodge, F. S. Bates, Soft Matter 2016, 12, 53;
- 14fV. Fischer, J. Marcus, D. Touraud, O. Diat, W. Kunz, J. Colloid Interface Sci. 2015, 453, 186.
- 15Reviews:
- 15aK. Margulis-Goshen, S. Magdassi, Curr. Opin. Colloid Interface Sci. 2012, 17, 290;
- 15bJ. M. O'Donnell, Chem. Soc. Rev. 2012, 41, 3061;
- 15cK. Landfester, Angew. Chem. Int. Ed. 2009, 48, 4488; Angew. Chem. 2009, 121, 4556;
- 15dJ. Allgaier, H. Frielinghaus, Microemulsions (Ed.: ), 2009, Wiley, Chichester, pp. 122–147.
10.1002/9781444305524.ch4 Google Scholar
- 16Recent examples:
- 16aN. Ma, Y. Deng, W. Liu, S. Li, J. Xu, Y. Qu, K. Gan, X. Sun, J. Yang, Chem. Commun. 2016, 52, 3544;
- 16bZ. Zhang, H. Liu, H. Zhou, X. Zhu, Z. Zhao, X. Chi, H. Shan, J. Gao, Nanoscale 2016, 8, 4373;
- 16cL. F. Yang, D. Q. Chu, L. M. Wang, G. Ge, H. L. Sun, RSC Adv. 2016, 6, 960;
- 16dY. Ge, Z. H. Shah, C. Wang, J. Wang, W. Mao, S. Zhang, R. Lu, ACS Appl. Mater. Interfaces 2015, 7, 26437;
- 16eY. Xue, Y. S. Ye, F. Y. Chen, H. Wang, C. Chen, Z. G. Xue, X. P. Zhou, X. L. Xie, Y. W. Mai, Chem. Commun. 2016, 52, 575;
- 16fU. Kostiv, O. Janouskova, M. Slouf, N. Kotov, H. Engstova, K. Smolkova, P. Jezek, D. Horak, Nanoscale 2015, 7, 18096;
- 16gS. Sharma, N. Yadav, P. K. Chowdhury, A. K. Ganguli, J. Phys. Chem. B 2015, 119, 11295.
- 17Reviews:
- 17aB. K. Paul, S. P. Moulik, J. Dispersion Sci. Technol. 1997, 18, 301;
- 17bB. K. Paul, S. P. Moulik, Curr. Sci. 2001, 80, 990;
- 17cS. P. Moulik, A. K. Rakshit, I. Capek, in Microemulsions (Ed.: ), 2009, Wiley, Chichester p. 180.
10.1002/9781444305524.ch6 Google Scholar
- 18Reviews:
- 18aM. J. Rosen, J. T. Kunjappu, Surfactants and Interfacial Phenomena, Wiley, New York, 2012;
- 18b“Surfactants”: K. Kosswig, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.
- 19Reviews:
- 19aS. Mintova, M. Jaber, V. Valtchev, Chem. Soc. Rev. 2015, 44, 7207;
- 19bC. M. Parlett, K. Wilson, A. F. Lee, Chem. Soc. Rev. 2013, 42, 3876;
- 19cA. Thomas, Angew. Chem. Int. Ed. 2010, 49, 8328; Angew. Chem. 2010, 122, 8506;
- 19dJ. M. Thomas, J. Klinowski, Angew. Chem. Int. Ed. 2007, 46, 7160; Angew. Chem. 2007, 119, 7294.
- 20Recent examples:
- 20aT. Wielpütz, H. F. Klemmer, R. Strey, T. Sottmann, Langmuir 2015, 31, 11227;
- 20bB. Dong, X. Xing, R. Wang, B. Wang, X. Zhou, C. Wang, L. Yu, Z. Wu, Y. Gao, Chem. Commun. 2015, 51, 11119;
- 20cP. Malo de Molina, F. S. Ihlefeldt, S. Prevost, C. Herfurth, M. S. Appavou, A. Laschewsky, M. Gradzielski, Langmuir 2015, 31, 5198;
- 20dS. Peng, C. Xu, T. C. Hughes, X. Zhang, Langmuir 2014, 30, 12270;
- 20eE. Negro, R. Latsuzbaia, A. H. de Vries, G. J. M. Koper, Soft Matter 2014, 10, 8685.
- 21
- 21aD. P. Acharya, P. G. Hartley, Curr. Opin. Colloid Interface Sci. 2012, 17, 274;
- 21bM. Gradzielski, Curr. Opin. Colloid Interface Sci. 2008, 13, 263.
- 22Reviews:
- 22aM. P. Pileni, J. Phys. Chem. 1993, 97, 6961;
- 22bM. P. Pileni, Nat. Mater. 2003, 2, 145.
- 23Review: A. Maitra, J. Phys. Chem. 1984, 88, 5122.
- 24P. Leidinger, R. Popescu, D. Gerthsen, C. Feldmann, Chem. Mater. 2013, 25, 4173.
- 25J. T. Overbeek, Faraday Discuss. Chem. Soc. 1978, 65, 7.
- 26
- 26aA. Bera, K. Ojha, T. Kumar, A. Mandal, Colloids Surf. A 2012, 404, 70;
- 26bY. Yamaguchi, R. Aoki, N. Asemar, C. Solans, H. Kunieda, Langmuir 1999, 15, 7438;
- 26cX. Li, E. Lin, G. Zhao, T. Xiao, J. Colloid Interface Sci. 1996, 184, 20;
- 26dM. Giustini, J. Phys. Chem. 1996, 100, 3190;
- 26eP. Ayyub, A. Maitra, D. O. Shah, J. Chem. Soc. Faraday Trans. 1993, 89, 3585;
- 26fJ. Lang, G. Mascolo, R. Zana, P. L. Luisi, J. Phys. Chem. 1990, 94, 3069.
- 27Reviews:
- 27aK. Kusada, H. Kitagawa, Adv. Mater. 2016, 28, 1129;
- 27bX. Kang, X. Sun, B. Han, Adv. Mater. 2016, 28, 1011;
- 27cH. Goesmann, C. Feldmann, Angew. Chem. Int. Ed. 2010, 49, 1362; Angew. Chem. 2010, 122, 1402;
- 27dC. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025.
- 28D. H. M. Buchold, C. Feldmann, Adv. Funct. Mater. 2008, 18, 1002.
- 29
- 29aS. Thachepan, M. Li, S. A. Davis, S. Mann, Chem. Mater. 2006, 18, 3557;
- 29bD. Liu, M. Z. Yates, Langmuir 2006, 22, 5566;
- 29cS. H. Kang, I. Hirasawa, W. S. Kim, C. K. Choi, J. Colloid Interface Sci. 2005, 288, 496;
- 29dL. M. Viravaidya Chulanapa, S. Mann, Chem. Commun. 2004, 2182.
- 30
- 30aM. Cornman, Artists. Pigm. 1986, 1, 37;
- 30bG. Buxbaum, Industrial Inorganic Pigments, VCH, Weinheim, 1993.
- 31
- 31aT. Minami, Semicond. Sci. Technol. 2005, 20, 35;
- 31bR. X. Wang, A. B. Djurisic, C. D. Beling, S. Fung, Trends Semicond. Res. 2005, 137;
- 31cZ. Q. Li, J. J. Lin, J. Appl. Phys. 2004, 10, 5918.
- 32
- 32aS. Shionoya, W. M. Yen, H. Yamamoto, Phosphor Handbook, CRC Press, Boca Raton, 2006;
- 32bC. Feldmann, T. Jüstel, C. R. Ronda, P. J. Schmidt, Adv. Funct. Mater. 2003, 13, 511.
- 33
- 33aY. Wang, J. Tang, X. Huang, L. Jiang, J. Rare Earths 2016, 34, 118;
- 33bK. Suzuki, K. Murayama, N. Tanaka, Appl. Phys. Lett. 2015, 107, 031902;
- 33cV. I. Parvulescu, C. Tiseanu, Catal. Today 2015, 253, 33;
- 33dS. K. Gupta, M. K. Bhide, R. M. Kadam, V. Natarajan, S. V. Godbole, J. Exp. Nanosci. 2015, 10, 610;
- 33eX. Qi, Y. Song, Y. Sheng, H. Zhang, H. Zhao, Z. Shi, H. Zou, Opt. Mater. 2014, 38, 193.
- 34
- 34aD. H. M. Buchold, C. Feldmann, Chem. Mater. 2007, 19, 3376;
- 34bD. H. M. Buchold, C. Feldmann, Solid State Sci. 2008, 10, 1305.
- 35
- 35aH. Dong, Y.-C. Chen, C. Feldmann, Green Chem. 2015, 17, 4107;
- 35bC. Feldmann, Adv. Funct. Mater. 2003, 13, 101;
- 35cC. Feldmann, H. O. Jungk, Angew. Chem. Int. Ed. 2001, 40, 359;
10.1002/1521-3773(20010119)40:2<359::AID-ANIE359>3.0.CO;2-B CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 372.
- 36
- 36aC. Kind, C. Feldmann, Chem. Mater. 2011, 23, 4982;
- 36bC. Kind, R. Popescu, R. Schneider, E. Müller, D. Gerthsen, C. Feldmann, RSC Adv. 2012, 2, 9473.
- 37J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, Pearson, New York, 2008.
- 38J. W. Lekse, T. J. Stagger, J. A. Aitken, Chem. Mater. 2007, 19, 3601.
- 39
- 39aY. Sun, Y. Xia, Anal. Chem. 2002, 74, 5297;
- 39bY. Sun, B. Mayers, Y. Xia, Adv. Mater. 2003, 15, 641;
- 39cX. Lu, H.-Y. Tuan, J. Chen, Z.-Y. Li, B. A. Korgel, Y. Xia, J. Am. Chem. Soc. 2007, 129, 1733.
- 40
- 40aH. P. Liang, L. J. Wan, C. L. Bai, L. Jiang, J. Phys. Chem. B 2005, 109, 7795;
- 40bM. Gellner, B. Küstner, S. Schlücker, Vib. Spectrosc. 2009, 50, 43.
- 41Reviews:
- 41aK. An, G. A. Somorjai, Catal. Lett. 2015, 145, 233;
- 41bI. Notar Francesco, F. Fontaine-Vive, S. Antoniotti, ChemCatChem 2014, 6, 2784;
- 41cG. J. Hutchings, Catal. Today 2014, 238, 69;
- 41dX. Liu, D. Wang, Y. Li, Nano Today 2012, 7, 448;
- 41eX. Liu, X. Liu, Angew. Chem. Int. Ed. 2012, 51, 3311; Angew. Chem. 2012, 124, 3367.
- 42Reviews:
- 42aM. Priebe, K. M. Fromm, Chem. Eur. J. 2015, 21, 3854;
- 42bM. Chen, C. Ye, S. Zhou, L. Wu, Adv. Mater. 2013, 25, 5343;
- 42cJ. Hu, M. Chen, X. Fang, L. Wu, Chem. Soc. Rev. 2011, 40, 5472;
- 42dX. W. Lou, Z. Archer, Z. Yang, Adv. Mater. 2008, 20, 3987.
- 43Recent examples:
- 43aH. Zhang, O. Noonan, X. Huang, Y. Yang, C. Xu, L. Zhou, C. Yu, ACS Nano 2016, 10, 4579;
- 43bS. Zhang, Q. Fan, H. Gao, Y. Huang, X. Liu, J. Li, X. Xu, X. Wang, J. Mater. Chem. A 2016, 4, 1414;
- 43cE. Bi, H. Chen, X. Yang, F. Ye, M. Yin, L. Han, Sci. Rep. 2015, 5, 13214;
- 43dS. Kandambeth, V. Venkatesh, D. B. Shinde, S. Kumari, A. Halder, S. Verma, R. Banerjee, Nat. Commun. 2015, 6, 6786;
- 43eJ. Zheng, Y. Cao, C. Cheng, C. Chen, R. W. Yan, H. X. Huai, Q. F. Dong, M. S. Zheng, C. C. Wang, J. Mater. Chem. A 2014, 2, 19882;
- 43fY. Li, J. Shi, Adv. Mater. 2014, 26, 3176.
- 44Recent examples:
- 44aX. Yu, R. Du, B. Li, Y. Zhang, H. Liu, J. Qu, X. An, Appl. Catal. B 2016, 182, 504;
- 44bS. Mezzavilla, C. Baldizzone, K. J. J. Mayrhofer, F. Schueth, ACS Appl. Mater. Interfaces 2015, 7, 12914;
- 44cY. Cao, F. Yuan, X. Zhang, Y. Chen, J. Nanosci. Lett. 2012, 2, 4/1;
- 44dH. M. Chen, R. S. Liu, J. Phys. Chem. C 2011, 115, 3513.
- 45
- 45aK. D. Gilroy, P. Farzinpour, A. Sundar, R. A. Hughes, S. Neretina, Chem. Mater. 2014, 26, 3340;
- 45bY. Wang, L. Cai, Y. Xia, Adv. Mater. 2005, 17, 473.
- 46
- 46aB. D. Anderson, J. B. Tracy, Nanoscale 2014, 6, 12195;
- 46bH. J. Fan, U. Gosele, M. Zacharias, Small 2007, 3, 1660.
- 47C. Zimmermann, C. Feldmann, M. Wanner, D. Gerthsen, Small 2007, 3, 1347.
- 48
- 48aD. Walsh, B. Lebeau, S. Mann, Adv. Mater. 1999, 11, 324;
- 48bM. Jafelicci Jr, M. R. Davolos, F. J. Dos Santos, S. J. De Andrade, J. Non-Cryst. Solids 1999, 247, 98;
- 48cY. X. Pang, X. Bao, J. Mater. Chem. 2002, 12, 3699;
- 48dX. Yu, C. Cao, H. Zhu, Q. Li, C. Liu, Q. Gong, Adv. Funct. Mater. 2007, 17, 1397.
- 49J. García-Martínez, Tomorrow′s Chemistry Today 2008, 47.
10.1002/9783527621767.ch3 Google Scholar
- 50Review: H. Gröger, C. Kind, P. Leidinger, M. Roming, C. Feldmann, Materials 2010, 3, 4355.
- 51
- 51aN. Jatupaiboon, Y. Wang, H. Wu, X. Song, Y. Song, J. Zhang, X. Ma, M. Tan, J. Mater. Chem. B 2015, 3, 3130;
- 51bD. P. Wang, H. C. Zeng, Chem. Mater. 2011, 23, 4886;
- 51cY. S. Lin, S. H. Wu, C. T. Tseng, Y. Hung, C. Chang, C. Y. Mou, Chem. Commun. 2009, 3542;
- 51dS. J. Park, Y. J. Kim, S. J. Park, Langmuir 2008, 24, 12134.
- 52C.-H. Lin, J.-H. Chang, Y.-Q. Yeh, S.-H. Wu, Y.-H. Liu, C.-Y. Mou, Nanoscale 2015, 7, 9614.
- 53
- 53aY. Jiang, S. Yang, X. Ding, Y. Guo, H. Bala, J. Zhao, K. Yu, Z. Wang, J. Mater. Chem. 2005, 15, 2041;
- 53bY. Jiang, X. Ding, J. Zhao, Z. Hari-Bala, T. Xu, Y. Tian, K. Yu, Y. Sheng, Y. Guo, Z. Wang, Mater. Lett. 2005, 59, 2893;
- 53cD. E. Zhang, Z. W. Tong, S. Z. Li, X. B. Zhang, A. Ying, Mater. Lett. 2008, 62, 4053.
- 54Y. Wang, A. Zhou, Z. Yang, Mater. Lett. 2008, 62, 1930.
- 55D. E. Zhang, Q. Xie, M. Y. Wang, X. B. Zhang, S. Z. Li, G. Q. Han, A. L. Ying, A. M. Chen, J. Y. Gong, Z. W. Tong, Solid State Sci. 2010, 12, 1529.
- 56B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou, J. Am. Chem. Soc. 2011, 133, 17146.
- 57D. Wu, X. Ge, Z. Zhang, M. Wang, S. Zhang, Langmuir 2004, 20, 5192.
- 58G. Zou, Z. Liu, D. Wang, C. Jiang, Y. Qian, Eur. J. Inorg. Chem. 2004, 2004, 4521.
- 59H. Cheng, B. Huang, Z. Wang, X. Qin, X. Zhang, Y. Dai, Chem. Eur. J. 2011, 17, 8039.
- 60
- 60aS. Y. Chang, L. Liu, S. A. Asher, J. Am. Chem. Soc. 1994, 116, 6745;
- 60bF. Teng, Z. Tian, G. Xiong, Z. Xu, Catal. Today 2004, 93–95, 651;
- 60cL. Li, E. S. G. Choo, X. Tang, J. Ding, J. Xue, Chem. Commun. 2009, 938;
- 60dJ. C. Park, J. Y. Kim, E. Heo, K. H. Park, H. Song, Langmuir 2010, 26, 16469;
- 60eS. H. Wu, C. T. Tseng, Y. S. Lin, C. H. Lin, Y. Hung, C. Y. Mou, J. Mater. Chem. 2011, 21, 789;
- 60fC. H. Lin, X. Liu, S. H. Wu, K. H. Liu, C. Y. Mou, J. Phys. Chem. Lett. 2011, 2, 2984.
- 61C. Kind, R. Popescu, E. Müller, D. Gerthsen, C. Feldmann, Nanoscale 2010, 2, 2223.
- 62D. H. M. Buchold, C. Feldmann, Nano Lett. 2007, 7, 3489.
- 63P. Leidinger, R. Popescu, D. Gerthsen, C. Feldmann, Small 2010, 6, 1886.
- 64P. Leidinger, N. Dingenouts, R. Popescu, D. Gerthsen, C. Feldmann, J. Mater. Chem. 2012, 22, 14551.
- 65P. Leidinger, J. Treptow, K. Hagens, J. Eich, N. Zehethofer, D. Schwudke, W. Öhlmann, H. Lünsdorf, O. Goldmann, U. E. Schaible, K. E. J. Dittmar, C. Feldmann, Angew. Chem. Int. Ed. 2015, 54, 12597; Angew. Chem. 2015, 127, 12786.
- 66
- 66aF. Gyger, M. Hübner, C. Feldmann, N. Barsan, U. Weimar, Chem. Mater. 2010, 22, 4821;
- 66bF. Gyger, A. Sackmann, M. Hübner, P. Bockstaller, D. Gerthsen, H. Lichtenberg, J.-D. Grunwaldt, N. Barsan, U. Weimar, C. Feldmann, Part. Part. Syst. Charact. 2014, 31, 591.
- 67C. Zurmühl, R. Popescu, D. Gerthsen, C. Feldmann, Solid State Sci. 2011, 13, 1505.
- 68C. Zurmühl, R. Popescu, D. Gerthsen, C. Feldmann, Z. Anorg. Allg. Chem. 2014, 640, 2669.
- 69P. Leidinger, R. Popescu, D. Gerthsen, H. Lünsdorf, C. Feldmann, Nanoscale 2011, 3, 2544.
- 70J. Jung-König, Nanoskalige Carbonat-Hohlkugeln mit Container-funktionalität für medizinische Anwendungen, PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, 2016.
- 71F. A. Long, W. F. McDevit, Chem. Rev. 1952, 51, 119.
- 72K. Hunger, Industrial Dyes, Wiley-VCH, Weinheim, 2002.
10.1002/3527602011 Google Scholar
- 73Reviews:
- 73aH. Arami, A. Khandhar, D. Liggitt, K. M. Krishnan, Chem. Soc. Rev. 2015, 44, 8576;
- 73bX. Yang, M. Yang, B. Pang, M. Vara, Y. Xia, Chem. Rev. 2015, 115, 10410;
- 73cN. Lee, D. Yoo, D. Ling, M. H. Cho, T. Hyeon, J. Cheon, Chem. Rev. 2015, 115, 10637;
- 73dK. P. Miller, L. Wang, B. C. Benicewicz, A. W. Decho, Chem. Soc. Rev. 2015, 44, 7787.
- 74Reviews:
- 74aR. Kuai, D. Li, Y. E. Chen, J. J. Moon, A. Schwendeman, ACS Nano 2016, 10, 3015;
- 74bN. Kamaly, B. Yameen, J. Wu, O. C. Farokhzad, Chem. Rev. 2016, 116, 2602;
- 74cY. Li, D. Maciel, J. Rodrigues, X. Shi, H. Tomas, Chem. Rev. 2015, 115, 8564;
- 74dM. Elsabahy, G. S. Heo, S. M. Lim, G. Sun, K. L. Wooley, Chem. Rev. 2015, 115, 10967.
- 75
- 75aM. E. Davis, MRS Bull. 2012, 37, 828;
- 75bJ. B. Hall, M. A. Dobrovolskaia, A. K. Patri, S. E. McNeil, Nanomedicine 2007, 2, 789.
- 76S. Simonato, Nanomaterials for Gas Sorption and Separation, PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, 2013.
- 77
- 77aP. Pedrosa, B. Veigas, D. Machado, I. Couto, M. Viveiros, P. V. Baptista, Tuberculosis (Oxford, U. K.) 2014, 94, 332;
- 77bB. Zargar, A. Hatamie, Spectrochim. Acta Part A 2013, 106, 185;
- 77cY. Xiang, K. Deng, H. Xia, C. Yao, Q. Chen, L. Zhang, Z. Liu, W. Fu, Biosens. Bioelectron. 2013, 49, 442;
- 77dM. Gajendiran, Y. Jainuddin, M. Sheik, V. Elangovan, S. Balasubramanian, J. Mater. Chem. B 2014, 2, 418;
- 77eR. Kalluru, F. Fenaroli, D. Westmoreland, L. Ulanova, A. Maleki, N. Roos, M. P. Madsen, G. Koster, W. Egge-Jacobson, S. Wilson, J. Cell Sci. 2013, 126, 3043;
- 77fL. L. I. J. Booysen, L. Kalambo, E. Brooks, R. Hansen, J. Gilliland, V. Gruppo, P. Lungenhofer, B. Semete-Makokolela, H. S. Swai, A. F. Kotze, Int. J. Pharm. 2013, 444, 10;
- 77gI. P. Kaur, M. K. Verma, Int. J. Pharm. 2011, 1, 110;
- 77hG. K. Saraogi, P. Gupta, U. D. Gupta, N. K. Jain, G. P. Agrawal, Int. J. Pharm. 2010, 385, 143.
- 78
- 78aY. Chao, P. P. Karmali, R. Mukthavaram, S. Kesari, V. L. Kouznetsova, I. F. Tsigelny, D. Simberg, ACS Nano 2013, 7, 4289;
- 78bL. K. Bogart, A. Taylor, Y. Cesbron, P. Murray, R. Levy, ACS Nano 2012, 6, 5961.
- 79C. Gottstein, G. Wu, B. J. Wong, J. A. Zasadzinski, ACS Nano 2013, 7, 4933.
- 80J. D. López-Castro, A. V. Maraloiu, J. J. Delgado, J. J. Calvino, M.-G. Blanchin, N. Galvez, J. M. Domınguez, Nanoscale 2011, 3, 4597.
- 81Reviews:
- 81aG. Weiss, U. Schaible, Immunol. Rev. 2015, 264, 182;
- 81bA. Dube, J. L. Reynolds, W. C. Law, C. C. Maponga, P. N. Prasad, G. D. Morse, Nanomedicine 2014, 10, 831.
- 82Reviews:
- 82a Tuberculosis: A comprehensive clinical reference (Eds.: ), Saunders Elsevier, Amsterdam, 2009;
- 82bD. L. Kasper, A. S. Fauci, Harrison's Infectious Diseases, McGraw-Hill, New York, 2010.
- 83World Health Organization (WHO), Global tuberculosis report 2014, ISBN 978 92 4 156480 9.
- 84Reviews:
- 84aA. Zumla, P. Nahid, S. T. Cole, Nat. Rev. Drug Discovery 2013, 12, 388;
- 84bR. Beena, D. S. Rawat, Med. Res. Rev. 2013, 33, 693;
- 84cC. Lu, Q. Liu, A. Sarm, C. Fitzpatrick, D. Falzon, C. D. Mitnick, PloS one 2013, 8, e 56074;
- 84dT. Gumbo, Nat. Genet. 2013, 45, 720.
- 85
- 85aH. Drakesmith, A. M. Prentice, Science 2012, 338, 768;
- 85bS. M. Santhanagopalan, G. M. Rodrigues, Tuberculosis (Oxford, U. K.) 2012, 92, 60;
- 85cA. K. Sharma, R. Naithani, V. Kumar, S. S. Sandhu, Curr. Med. Chem. 2011, 18, 1723;
- 85dU. E. Schaible, S. H. Kaufmann, Nat. Rev. Microbiol. 2004, 2, 946.
- 86Review: J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, D. M. Parkin, Int. J. Cancer 2010, 127, 2893.
- 87Review: O. Tacar, P. Sriamornsak, C. R. Dass, J. Pharm. Pharmacol. 2013, 65, 157.
- 88
- 88aB. Wang, W. Meng, M. Bi, Y. Ni, Q. Cai, J. Wang, Dalton Trans. 2013, 42, 8918;
- 88bJ. You, G. Zhang, C. Li, ACS Nano 2010, 4, 1033.
- 89X. Dai, Z. Yue, M. E. Eccleston, J. Swartling, N. K. H. Slater, C. F. Kaminski, Nanomed. 2008, 4, 49.
- 90Recent examples:
- 90aS. Das, V. Jayaraman, Prog. Mater. Sci. 2014, 66, 112;
- 90bJ. Zhang, X. Liu, G. Neri, N. Pinna, Adv. Mater. 2016, 28, 795;
- 90cY. Jiang, X. Fan, X. Xiao, T. Qin, L. Zhang, F. Jiang, M. Li, S. Li, H. Ge, L. Chen, J. Mater. Chem. A 2016, 4, 657;
- 90dX. Wang, M. Liao, Y. Zhong, J. Y. Zheng, W. Tian, T. Zhai, C. Zhi, Y. Ma, J. Yao, Y. Bando, Adv. Mater. 2012, 24, 3421.
- 91Reviews:
- 91aG. Heiland, Z. Phys. 1954, 138, 459;
- 91bA. Bielanski, J. Deren, J. Haber, Nature 1957, 179, 668;
- 91cT. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, Anal. Chem. 1962, 34, 1502;
- 91dK. Ihokura, J. Waston, The Stannic Oxide Gas Sensor: Principle and Application, CRC Press, Boca Raton, 1994.
- 92
- 92aM. Yuasa, T. Kida, K. Shimanoe, ACS Appl. Mater. Interfaces 2012, 4, 4231;
- 92bE. Y. Sevastyanov, N. K. Maksimova, V. A. Novikov, F. V. Rodov, N. V. Sergeychenko, E. V. Chernikov, Semiconductors 2012, 46, 801;
- 92cH. K. Seo, S. S. Als-Deyab, Z. A. Ansari, Sens. Actuators B 2012, 168, 149;
- 92dL. K. Bagal, J. Y. Patil, I. S. Mulla, S. S. Suryavanshi, Ceram. Int. 2012, 38, 4835;
- 92eP. A. Russo, N. Donato, S. G. Leonardi, S. Baek, D. E. Conte, G. Neri, N. Pinna, Angew. Chem. Int. Ed. 2012, 51, 11053; Angew. Chem. 2012, 124, 11215.
- 93
- 93aM. Friedrich, S. Penner, M. Heggen, M. Armbrüster, Angew. Chem. Int. Ed. 2013, 52, 4389; Angew. Chem. 2013, 125, 4485;
- 93bM. Hübner, N. Barsan, U. Weimar, Sens. Actuators B 2012, 171–172, 172;
- 93cZ. Zhang, J. T. Yates, Chem. Rev. 2012, 112, 5520;
- 93dC. Malagú, M. C. Carotta, S. Galliera, V. Guidi, T. G. G. Maffeis, G. Martinelli, G. T. Owen, S. P. Wilks, Sens. Actuators B 2004, 103, 50.
- 94Recent examples:
- 94aC. Du, Y. Guo, Y. Guo, X. Q. Gong, G. Lu, J. Mater. Chem. A 2015, 3, 23230;
- 94bC. A. Wang, S. L. Li, Chem. Commun. 2013, 49, 7427;
- 94cJ. Sun, Z. Dong, X. Sun, P. Li, F. Zhang, W. Hu, H. Yang, H. Wang, R. Li, J. Mol. Catal. A 2013, 367, 46;
- 94dM. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero, C. B. Murray, Science 2013, 341, 771.
- 95Recent examples:
- 95aS. Yang, P. Huang, L. Peng, C. Cao, Y. Zhu, F. Wei, Y. Sun, W. Song, J. Mater. Chem. A 2016, 4, 400;
- 95bS. Fang, Y. Xin, L. Ge, C. Han, P. Qiu, L. Wu, Appl. Catal. B 2015, 179, 458;
- 95cS. J. Choi, M. P. Kim, S. J. Lee, B. J. Kim, I. D. Kim, Nanoscale 2014, 6, 11898;
- 95dJ. Y. Hong, S. Huh, J. Colloid Interface Sci. 2014, 436, 77;
- 95eF. Q. Liu, W. H. Li, B. C. Liu, R. X. Li, J. Mater. Chem. A 2013, 1, 8037;
- 95fY. Yu, C. Y. Cao, Z. Chen, H. Liu, P. Li, Z. F. Dou, W. G. Song, Chem. Commun. 2013, 49, 3116.
- 96S. Simonato, H. Gröger, J. Möllmer, R. Staudt, A. Puls, F. Dreisbach, C. Feldmann, Chem. Commun. 2012, 48, 844.
- 97Reviews:
- 97aD. M. D′Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058; Angew. Chem. 2010, 122, 6194;
- 97bS. Ma, H. C. Zhou, Chem. Commun. 2010, 46, 44.
- 98
- 98aP. L. Llewllyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J. Chang, D. Hong, Y. K. Hwang, S. H. Jhung, G. Ferey, Langmuir 2008, 24, 7245;
- 98bA. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998.
- 99Reviews:
- 99aS. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2009, 2, 796;
- 99bD.-Y. Hong, Y. K. Hwang, C. Serre, G. Ferey, J.-S. Chang, Adv. Funct. Mater. 2009, 19, 1537.
- 100Reviews:
- 100aM. P. Pileni, J. Mater. Chem. 2011, 21, 16748;
- 100bB. A. Helms, T. E. Williams, R. Buonsanti, D. J. Milliron, Adv. Mater. 2015, 27, 5820.
- 101
- 101aA. Dreyer, A. Feld, A. Kornowski, E. D. Yilmaz, H. Noei, A. Meyer, T. Krekeler, C. Jiao, A. Stierle, V. Abetz, H. Weller, G. A. Schneider, Nat. Mater. 2016, 15, 522;
- 101bY. Jiao, D. Han, Y. Ding, X. Zhang, G. Guo, J. Hu, D. Yang, A. Dong, Nat. Commun. 2015, 6, 6420;
- 101cC. Y. Chiu, C. K. Chen, C. W. Chang, U. S. Jeng, C. S. Tan, C. W. Yang, L. J. Chen, T. J. Yen, M. H. Huang, J. Am. Chem. Soc. 2015, 137, 2265;
- 101dW. Li, H. Fan, J. Li, Nano Lett. 2014, 14, 4951;
- 101eT. Wang, J. Zhuang, J. Lynch, O. Chen, Z. Wang, X. Wang, D. LaMontagne, H. Wu, Z. Wang, Y. C. Cao, Science 2012, 338, 358.
- 102Reviews:
- 102aJ. Yang, M. K. Choi, D. H. Kim, T. Hyeon, Adv. Mater. 2016, 28, 1176;
- 102bJ. Q. Grim, L. Manna, I. Moreels, Chem. Soc. Rev. 2015, 44, 5897;
- 102cM. F. Oszajca, M. I. Bodnarchuk, M. V. Kovalenko, Chem. Mater. 2014, 26, 5422.
- 103
- 103aX. Li, L. Zhou, Y. Wei, A. M. El-Toni, F. Zhang, D. Zhao, J. Am. Chem. Soc. 2015, 137, 5903;
- 103bG. Zhang, H. B. Wu, T. Song, U. Paik, X. W. Lou, Angew. Chem. Int. Ed. 2014, 53, 12590; Angew. Chem. 2014, 126, 12798;
- 103cX. Lai, J. E. Halpert, D. Wang, Energy Environ. Sci. 2012, 5, 5604;
- 103dG. Duan, W. Cai, Y. Luo, F. Sun, Adv. Funct. Mater. 2007, 17, 644;
- 103eC. Tapeinos, I. Kartsonakis, P. Liatsi, I. Daniilidis, G. Kordas, J. Am. Ceram. Soc. 2008, 91, 1052.
- 104Reviews:
- 104aN. M. Correa, J. J. Silber, R. E. Ritter, N. E. Levinger, Chem. Rev. 2012, 112, 4569;
- 104bW. Kunz, T. Zemb, A. Harrar, Curr. Opin. Colloid Interface Sci. 2012, 17, 205;
- 104cF. Gao, C. C. Co, in Microemulsions (Ed. ), Wiley-VCH, Weinheim, 2009, p. 211.
10.1002/9781444305524.ch7 Google Scholar
- 105Reviews: O. Zech, A. Harrar, W. Kunz, Ionic Liquids: Theory, Properties, New Approaches (Ed. ), InTech, Rijeka, 2011, p. 245.
- 106
- 106aD. Tanaka, A. Henke, K. Albrecht, M. Möller, K. Nakagawa, S. Kitagawa, J. Groll, Nat. Chem. 2010, 2, 410;
- 106bP. Setua, R. Pramanik, S. Sarkar, C. Ghatak, S. K. Das, N. Sarkar, J. Phys. Chem. B 2010, 114, 7557;
- 106cP. Setua, A. Chakraborty, D. Seth, M. U. Bhatta, P. V. Satyam, N. Sarkar, J. Phys. Chem. C 2007, 111, 3901;
- 106dG. N. Karanikolos, P. Alexandridis, G. Itskos, A. Petrou, T. J. Mountziaris, Langmuir 2004, 20, 550;
- 106eV. Chhabra, M. Lal, A. N. Maitra, P. Ayyub, J. Mater. Res. 1995, 10, 2689.
- 107
- 107aR. Gomes, S. Roming, A. Przybilla, M. A. R. Meier, C. Feldmann, J. Mater. Chem. C 2014, 2, 1513;
- 107bF. Gyger, P. Bockstaller, D. Gerthsen, C. Feldmann, Angew. Chem. Int. Ed. 2013, 52, 12443; Angew. Chem. 2013, 125, 12671;
- 107cF. Gyger, P. Bockstaller, H. Gröger, D. Gerthsen, C. Feldmann, Chem. Commun. 2014, 50, 2939.
- 108
- 108aJ. Finnis, J. Lewis, A. Davidson, Sci. Justice 2013, 53, 178G.
- 108bG. Merényi, J. Lind, T. E. Eriksen, J. Biolumin. Chemilumin. 1990, 5, 53.
- 109
- 109aF. Barni, S. W. Lewis, A. Berti, G. M. Miskelly, G. Lagoa, Talanta 2007, 72, 896;
- 109bJ. L. Webb, J. I. Creamer, T. I. Quickenden, Luminescence 2006, 21, 214.
- 110Reviews:
- 110aE. L. Clennan, A. Pace, Tetrahedron 2005, 61, 6665;
- 110bP. R. Ogilby, Chem. Soc. Rev. 2010, 39, 3181.
- 111Reviews:
- 111aR. Nesper, Z. Anorg. Allg. Chem. 2014, 640, 2639;
- 111bS. Scharfe, F. Kraus, S. Stegmaier, A. Schier, T. F. Fässler, Angew. Chem. Int. Ed. 2011, 50, 3630; Angew. Chem. 2011, 123, 3712;
- 111c“Liquid Ammonia”: J. J. Lagowski, in Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, Vol. 37, 2007, p. 115.
- 112S. E. Friberg, C.-C. Yang, R. Goubran, R. E. Partch, Langmuir 1991, 7, 1103.
- 113S. Bzik, M. Jansen, Chem. Eur. J. 2003, 9, 613.
- 114A. Maitra, J. Phys. Chem. 1984, 88, 5122.
- 115
- 115aB. Das, M. V. Reddy, B. V. R. Chowdari, Nanoscale 2013, 5, 1961;
- 115bL. Xu, S. Li, Y. Zhang, Y. Zhai, Nanoscale 2012, 4, 4900;
- 115cR. S. Ningthoujam, R. N. Panda, N. S. Gajbhiye, Mater. Chem. Phys. 2012, 134, 377;
- 115dC. Giordano, M. Antonietti, Nano Today 2011, 6, 366;
- 115eV. Mazumder, Y. Lee, S. Sun, Adv. Funct. Mater. 2010, 20, 1224;
- 115fZ. Yao, A. Zhu, C. Shi, Catal. Lett. 2009, 130, 63;
- 115gY. Shi, R. Zhang, D. Zhao, Adv. Funct. Mater. 2008, 18, 2436;
- 115hE. Horvath-Bordon, R. Riedel, A. Zerr, P. F. McMillan, G. Auffermann, Y. Prots, W. Bronger, R. Kniep, P. Kroll, Chem. Soc. Rev. 2006, 35, 987.
- 116
- 116aA. Manz, A. Birkner, M. Kolbe, R. A. Fischer, Adv. Mater. 2000, 12, 569;
- 116bA. C. Frank, R. A. Fischer, Adv. Mater. 1998, 10, 961.
- 117
- 117aC. Schöttle, P. Bockstaller, D. Gerthsen, C. Feldmann, Chem. Commun. 2014, 50, 4547;
- 117bC. Schöttle, P. Bockstaller, R. Popescu, D. Gerthsen, C. Feldmann, Angew. Chem. Int. Ed. 2015, 54, 9866; Angew. Chem. 2015, 127, 10004;
- 117cC. Schöttle, D. Doronkin, R. Popescu, D. Gerthsen, J.-D. Grunwaldt, C. Feldmann, Chem. Commun. 2016, 52, 6316.