Conductive Elastomers with Autonomic Self-Healing Properties
Kun Guo
Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Search for more papers by this authorDa-Li Zhang
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu, 610065 (China)
Search for more papers by this authorXiao-Mei Zhang
Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Search for more papers by this authorProf. Dr. Jian Zhang
School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030012 (China)
Search for more papers by this authorProf. Dr. Li-Sheng Ding
Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Bang-Jing Li
Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Bang-Jing Li, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Sheng Zhang, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu, 610065 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Sheng Zhang
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu, 610065 (China)
Bang-Jing Li, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Sheng Zhang, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu, 610065 (China)
Search for more papers by this authorKun Guo
Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Search for more papers by this authorDa-Li Zhang
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu, 610065 (China)
Search for more papers by this authorXiao-Mei Zhang
Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Search for more papers by this authorProf. Dr. Jian Zhang
School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030012 (China)
Search for more papers by this authorProf. Dr. Li-Sheng Ding
Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Bang-Jing Li
Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Bang-Jing Li, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Sheng Zhang, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu, 610065 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Sheng Zhang
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu, 610065 (China)
Bang-Jing Li, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 (China)
Sheng Zhang, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu, 610065 (China)
Search for more papers by this authorGraphical Abstract
Candidates for smart robotics: Self-healing conductive composites were prepared by connecting single-walled carbon nanotubes (SWCNTs) to a polymer network through host–guest interactions (see picture). The poly(2-hydroxyethyl methacrylate)–SWCNT composite combines bulk electrical conductivity, proximity sensitivity, humidity sensitivity, and autonomic self-healing properties.
Abstract
Healable, electrically conductive materials are highly desirable and valuable for the development of various modern electronics. But the preparation of a material combining good mechanical elasticity, functional properties, and intrinsic self-healing ability remains a great challenge. Here, we design composites by connecting a polymer network and single-walled carbon nanotubes (SWCNTs) through host–guest interactions. The resulting materials show bulk electrical conductivity, proximity sensitivity, humidity sensitivity and are able to self-heal without external stimulus under ambient conditions rapidly. Furthermore, they also possess elasticity comparable to commercial rubbers.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201505790_sm_Movie_S1.avi3.9 MB | Movie_S1 |
anie_201505790_sm_Movie_S2.avi2.4 MB | Movie_S2 |
anie_201505790_sm_Movie_S3.avi2 MB | Movie_S3 |
anie_201505790_sm_Movie_S4.avi4.7 MB | Movie_S4 |
anie_201505790_sm_miscellaneous_information.pdf868.2 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Zhang, D. Xu, X. Yan, J. Chen, S. Dong, B. Zheng, F. Huang, Angew. Chem. Int. Ed. 2012, 51, 7011–7015; Angew. Chem. 2012, 124, 7117–7121.
- 2X. Yan, D. Xu, X. Chi, J. Chen, S. Dong, X. Ding, Y. Yu, F. Huang, Adv. Mater. 2012, 24, 362–369.
- 3I. Bond, S. White, N. Sottos, J. R. Soc. Interface 2007, 4, 347–348.
- 4H. Jin, C. L. Mangun, A. S. Griffin, J. S. Moore, N. R. Sottos, S. R. White, Adv. Mater. 2014, 26, 282–287.
- 5J. A. Syrett, C. R. Becer, D. M. Haddleton, Polym. Chem. 2010, 1, 978–987.
- 6Y. Chen, A. M. Kushner, G. A. Williams, Z. Guan, Nat. Chem. 2012, 4, 467–472.
- 7S. Chen, X. Li, Y. Li, J. Sun, ACS Nano 2015, 9, 4070–4076.
- 8H. Sun, Y. Xiao, Y. Jiang, G. Guan, X. Fang, J. Deng, P. Chen, Y. Luo, H. Peng, Angew. Chem. Int. Ed. 2014, 53, 9526–9531; Angew. Chem. 2014, 126, 9680–9685.
- 9S. A. Odom, S. Chayanupatkul, B. J. Blaiszik, O. Zhao, A. C. Jackson, P. V. Braun, N. R. Sottos, S. R. White, J. S. Moore, Adv. Mater. 2012, 24, 2578–2581.
- 10M. M. Caruso, S. R. Schelkopf, A. C. Jackson, A. M. Landry, P. V. Braun, J. S. Moore, J. Mater. Chem. 2009, 19, 6093–6096.
- 11S. A. Odom, M. M. Caruso, A. D. Finke, A. M. Prokup, J. A. Ritchey, J. H. Leonard, S. R. White, N. R. Sottos, J. S. Moore, Adv. Funct. Mater. 2010, 20, 1721–1727.
- 12B. J. Blaiszik, S. L. B. Kramer, M. E. Grady, D. A. Mcllroy, J. S. Moore, N. R. Sottos, S. R. White, Adv. Mater. 2012, 24, 398–401.
- 13C. Wang, H. Wu, Z. Chen, M. McDowell, Y. Cui, Z. Bao, Nat. Chem. 2013, 5, 1042–1048.
- 14H. Wang, B. Zhu, W. Jiang, Y. Yang, W. R. Leow, H. Wang, X. Chen, Adv. Mater. 2014, 26, 3638–3643.
- 15Y. Li, S. Chen, M. Wu, J. Sun, ACS Appl. Mater. Interfaces 2014, 6, 16409–16415.
- 16D. Zhang, X. Ju, L. Li, Y. Kang, X. Gong, B. Li, S. Zhang, Chem. Commun. 2015, 51, 6377–6380.
- 17B. C. Tee, C. Wang, R. Allen, Z. Bao, Nat. Nanotechnol. 2012, 7, 825–832.
- 18Y. Li, S. Chen, M. Wu, J. Sun, Adv. Mater. 2012, 24, 4578–4582.
- 19T. Ogoshi, Y. Takashima, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2007, 129, 4878–4879.
- 20T. Kakuta, Y. Takashima, A. Harada, Macromolecules 2013, 46, 4575–4579.
- 21M. Nakahata, Y. Takashima, A. Hashidzume, A. Harada, Angew. Chem. Int. Ed. 2013, 52, 5731–5735; Angew. Chem. 2013, 125, 5843–5847.
- 22C. Moers, L. Nuhn, M. Wissel, R. Stangenberg, M. Mondeshki, E. B. Nicoletti, A. Thomas, D. Schaeffel, K. Koynov, M. Klapper, R. Zentel, H. Frey, Macromolecules 2013, 46, 9544–9553.
- 23J. Liu, J. Alvarez, W. Ong, E. Román, A. E. Kaifer, J. Am. Chem. Soc. 2001, 123, 11148–11154.
- 24W. Ha, Y. Kang, S. Peng, L. Ding, S. Zhang, B. Li, Nanotechnology 2013, 24, 495103–495110.
- 25R. Fuhrer, E. K. Athanassiou, N. A. Luechinger, W. J. Stark, Small 2009, 5, 383–388.
- 26D. E. Rosenfeld, Z. Gengeliczki, B. J. Smith, T. D. P. Stack, M. D. Fayer, Science 2011, 334, 634–639.
- 27Q. Liu, C. Li, T. Yang, T. Yi, F. Li, Chem. Commun. 2010, 46, 5551–5553.
- 28R. C. Sabapathy, S. Bhattacharyya, W. E. Cleland, C. L. Hussey, Langmuir 1998, 14, 3797–3807.
- 29I. Noda, J. Am. Chem. Soc. 1989, 111, 8116–8118.
- 30C. Wang, N. Liu, R. Allen, J. B. H. Tok, Y. Wu, F. Zhang, Y. Chen, Z. Bao, Adv. Mater. 2013, 25, 5785–5790.
- 31M. V. Circu, Y. S. Ko, A. C. Gerecke, D. M. Opris, Macromol. Mater. Eng. 2014, 299, 1126–1133.
- 32J. Lessing, S. A. Morin, C. Keplinger, A. S. Tayi, G. M. Whitesides, Adv. Funct. Mater. 2015, 25, 1418–1425.
- 33J. Biggs, K. Danielmeier, J. Hitzbleck, T. Kridl, S. Nowak, E. Orselli, X. Quan, D. Schapeler, W. Sutherland, J. Wagner, Angew. Chem. Int. Ed. 2013, 52, 9409–9421; Angew. Chem. 2013, 125, 9581–9595.
- 34L. Xia, R. Xie, X. Ju, W. Wang, Q. Chen, L. Chu, Nat. Commun. 2013, 4, 2226–2236.
- 35J. Sun, X. Zhao, W. R. K. Illeperuma, O. Chandhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133–136.
- 36S. Benight, C. Wang, J. Tok, Z. Bao, Prog. Polym. Sci. 2013, 38, 1961–1977.
- 37M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511–516.
- 38Y. Wang, D. Zhang, T. Zhou, H. Zhang, W. Zhang, L. Luo, A. Zhang, B. Li, S. Zhang, Polym. Chem. 2014, 5, 2922–2927.
- 39A. Gomez-Casado, H. H. Dam, D. Yilmaz, D. Florea, P. Jonkheijm, J. Huskend, J. Am. Chem. Soc. 2011, 133, 10849–10857.
- 40M. Cheng, F. Shi, J. Li, Z. Lin, C. Jiang, M. Xiao, L. Zhang, W. Yang, T. Nishi, Adv. Mater. 2014, 26, 3009–3013.
- 41Q. Kuang, C. Lao, Z. Wang, Z. Xie, L. Zheng, J. Am. Chem. Soc. 2007, 129, 6070–6071.
- 42J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang, Y. Xie, Adv. Mater. 2012, 24, 1969–1974.
- 43K. K. Sadasivuni, A. Kafy, L. Zhai, H. Ko, S. Mun, J. Kim, Small 2015, 11, 994–1002.
- 44S. Mao, S. Cui, G. Lu, K. Yu, Z. Wei, J. Chen, J. Mater. Chem. 2012, 22, 11009–11013.
- 45S. Y. Liew, W. Thielemans, D. A. Walsh, J. Phys. Chem. C 2010, 114, 17926–17933.
- 46S. Kim, W. Choi, W. Rim, Y. Chun, H. Shim, H. Kwon, J. Kim, I. Kee, S. Kim, S. Y. Lee, J. Park, IEEE Trans. Electron Devices 2011, 58, 3609–3615.