Magnetically Triggered Dual Functional Nanoparticles for Resistance-Free Apoptotic Hyperthermia†
Dr. Dongwon Yoo
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorHeeyeong Jeong
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorSeung-Hyun Noh
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorDr. Jae-Hyun Lee
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Jinwoo Cheon
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)===Search for more papers by this authorDr. Dongwon Yoo
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorHeeyeong Jeong
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorSeung-Hyun Noh
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorDr. Jae-Hyun Lee
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Jinwoo Cheon
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)
Department of Chemistry, Yonsei University, Seoul 120-749 (Korea)===Search for more papers by this authorThis work was financially supported by a grant from the Creative Research Initiative (grant number 2010-0018286).
Graphical Abstract
Overcoming resistance: Heat-treated cancer cells possess a protective mechanism for resistance and survival. Resistance-free apoptosis-inducing magnetic nanoparticles (RAINs) successfully promote hyperthermic apoptosis, obstructing cell survival by triggering two functional units of heat generation and the release of geldanamycin (GM) for heat shock protein (Hsp) inhibition under an alternating magnetic field (AMF).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201306557_sm_miscellaneous_information.pdf167.6 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Lewis, Nat. Rev. Drug Discovery 2013, 12, 371–387;
- 1bA. Persidis, Nat. Biotechnol. 1999, 17, 94–95;
- 1cM. M. Gottesman, T. Fojo, S. E. Bates, Nat. Rev. Cancer 2002, 2, 48–58.
- 2
- 2aJ. van der Zee, Ann. Oncol. 2002, 13, 1173–1184;
- 2bL. F. Fajardo, Cancer Res. 1984, 44, 4826s–4835s.
- 3
- 3aY. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S.-Y. Liu, M. Li, P. Kim, Z.-Y. Li, L. V. Wang, Y. Liu, Y. Xia, ACS Nano 2013, 7, 2068–2077;
- 3bS. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, V. P. Dravid, Angew. Chem. 2013, 125, 4254–4258; Angew. Chem. Int. Ed. 2013, 52, 4160–4164;
- 3cM. J. Sailor, J.-H. Park, Adv. Mater. 2012, 24, 3779–3802;
- 3dJ.-L. Li, H.-C. Bao, X.-L. Hou, L. Sun, X.-G. Wang, M. Gu, Angew. Chem. 2012, 124, 1866–1870; Angew. Chem. Int. Ed. 2012, 51, 1830–1834;
- 3eJ. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, H. Dai, J. Am. Chem. Soc. 2011, 133, 6825–6831;
- 3fS. Wang, K.-J. Chen, T.-H. Wu, H. Wang, W.-Y. Lin, M. Ohashi, P.-Y. Chiou, H.-R. Tseng, Angew. Chem. 2010, 122, 3865–3869; Angew. Chem. Int. Ed. 2010, 49, 3777–3781;
- 3gW.-S. Kuo, C.-N. Chang, Y.-T. Chang, M.-H. Yang, Y.-H. Chien, S.-J. Chen, C.-S. Yeh, Angew. Chem. 2010, 122, 2771–2775;
10.1002/ange.200906927 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 2711–2715;
- 3hK. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318–3323;
- 3iJ. Alper, K. Hamad-Schifferli, Langmuir 2010, 26, 3786–3789;
- 3jR. Bardhan, W. Chen, C. Perez-Torres, M. Bartels, R. M. Huschka, L. L. Zhao, E. Morosan, R. G. Pautler, A. Joshi, N. J. Halas, Adv. Funct. Mater. 2009, 19, 3901–3909;
- 3kJ. Nam, N. Won, H. Jin, H. Chung, S. Kim, J. Am. Chem. Soc. 2009, 131, 13639–13645;
- 3lS. Lal, S. E. Clare, N. J. Halas, Acc. Chem. Res. 2008, 41, 1842–1851;
- 3mX. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115–2120;
- 3nT. Hauck, W. C. W. Chan, Nanomedicine 2006, 1, 115–117.
- 4
- 4aY. Pan, X. Du, F. Zhao, B. Xu, Chem. Soc. Rev. 2012, 41, 2912–2942;
- 4bM. Colombo, S. Carregal-Romero, M. F. Casula, L. Gutiérrez, M. P. Morales, I. B. Böhm, J. T. Heverhagen, D. Prosperi, W. J. Parak, Chem. Soc. Rev. 2012, 41, 4306–4334;
- 4cS.-h. Noh, W. Na, J.-t. Jang, J.-H. Lee, E. J. Lee, S. H. Moon, Y. Lim, J.-S. Shin, J. Cheon, Nano Lett. 2012, 12, 3716–3721;
- 4dP. Guardia, R. Di Corato, L. Lartigue, C. Wilhelm, A. Espinosa, M. Garcia-Hernandez, F. Gazeau, L. Manna, T. Pellegrino, ACS Nano 2012, 6, 3080–3091;
- 4eL. Lartigue, C. Innocenti, T. Kalaivani, A. Awwad, M. del Mar Sanchez Duque, Y. Guari, J. Larionova, C. Guerin, J.-L. G. Montero, V. Barragan-Montero, P. Arosio, A. Lascialfari, D. Gatteschi, C. Sangregorio, J. Am. Chem. Soc. 2011, 133, 10459–10472;
- 4fJ.-H. Lee, J.-t. Jang, J.-s. Choi, S. H. Moon, S.-h. Noh, J.-w. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, J. Cheon, Nat. Nanotechnol. 2011, 6, 418–422;
- 4gD. Ho, X.-L. Sun, S.-H. Sun, Acc. Chem. Res. 2011, 44, 875–882;
- 4hD. Yoo, J.-H. Lee, T.-H. Shin, J. Cheon, Acc. Chem. Res. 2011, 44, 863–874;
- 4iK. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari, H. Fuchs, Angew. Chem. 2009, 121, 886–913;
10.1002/ange.200802585 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 872–897;
- 4jD. Shi, H. S. Cho, Y. Chen, H. Xu, H. Gu, J. Lian, W. Wang, G. Liu, C. Huth, L. Wang, R. C. Ewing, S. Budko, G. M. Pauletti, Z. Dong, Adv. Mater. 2009, 21, 2170–2173;
- 4kC. Sun, J. S. H. Lee, M. Zhang, Adv. Drug Delivery Rev. 2008, 60, 1252–1265;
- 4lF. Sonvico, S. Mornet, S. Vasseur, C. Dubernet, D. Jaillard, J. Degrouard, J. Hoebeke, E. Duguet, P. Colombo, P. Couvreur, Bioconjugate Chem. 2005, 16, 1181–1188;
- 4mY.-w. Jun, Y.-M. Huh, J.-s. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Kim, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh, J. Cheon, J. Am. Chem. Soc. 2005, 127, 5732–5733.
- 5
- 5a“Hyperthermia, the Tumor Microenvironment and Immunity”: S. K. Calderwood in Tumor Ablation, The Tumor Microenvironment 5 (Ed.: ), Springer, Dordrecht, 2013, pp. 29–37;
10.1007/978-94-007-4694-7_2 Google Scholar
- 5bG. C. Li, N. F. Mivechi, G. Weitzel, Int. J. Hyperthermia 1995, 11, 459–488.
- 6
- 6aM. Koishi, S. Yokota, T. Mae, Y. Nishimura, S. Kanamori, N. Horii, K. Shibuya, K. Sasai, M. Hiraoka, Clin. Cancer Res. 2001, 7, 215–219;
- 6bS. Yokota, M. Kitahara, K. Nagata, Cancer Res. 2000, 60, 2942–2948.
- 7
- 7aJ.-t. Jang, H. Nah, J.-H. Lee, S. H. Moon, M. G. Kim, J. Cheon, Angew. Chem. 2009, 121, 1260–1264; Angew. Chem. Int. Ed. 2009, 48, 1234–1238;
- 7bD. Yoo, H. Jeong, C. Preihs, J.-s. Choi, T.-H. Shin, J. L. Sessler, J. Cheon, Angew. Chem. 2012, 124, 12650–12653; Angew. Chem. Int. Ed. 2012, 51, 12482–12485.
- 8
- 8aL. Neckers, S. P. Ivy, Curr. Opin. Oncol. 2003, 15, 419–424;
- 8bD. Picard, Cell. Mol. Life Sci. 2002, 59, 1640–1648.
- 9
- 9aA. Huston, X. Leleu, X, Jia, A. S. Moreau, H. T. Ngo, J. Runnels, J. Anderson, Y. Alsayed, A. Roccaro, S. Vallet, E. Hatjiharissi, Y. T. Tai, P. Sportelli, N. Munshi, P. Richardson, T. Hideshima, D. G. Roodman, K. C. Anderson, I. M. Ghobrial, Clin. Cancer Res. 2008, 14, 865–874;
- 9bN. Zaarur, V. L. Gabai, J. A. Porco, Jr., S. Calderwood, M. Y. Sherman, Cancer Res. 2006, 66, 1783–1791;
- 9cM. J. Drysdale, P. A. Brough, A. Massey, M. R. Jensen, J. Schoepfer, Curr. Opin. Drug Discov. Devel. 2006, 9, 483–495;
- 9dL. Whitesell, E. G. Mimnaugh, B. De Costa, C. E. Myers, L. M. Neckers, Proc. Natl. Acad. Sci. USA 1994, 91, 8324–8328;
- 9eW. Yan, J. Xiao, T. Liu, W. Huang, X. Yang, Z. Wu, Q. Huang, M. Qian, Tumor Biol. 2013, 34, 1391–1397.
- 10Y. Kasuya, Z.-R. Lu, P. Kopečková, J. Kopečeka, Bioorg. Med. Chem. Lett. 2001, 11, 2089–2091.
- 11J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 4th ed., Wiley Interscience, New York, 1985.
- 12
- 12aH. Huang, S. Delikanli, H. Zeng, D. M. Ferkey, A. Pralle, Nat. Nanotechnol. 2010, 5, 602–605;
- 12bA. Riedinger, P. Guardia, A. Curcio, M. A. Garcia, R. Cingolani, L. Manna, T. Pellegrino, Nano Lett. 2013, 13, 2399–2406.
- 13J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed., Wiley, New York, 1999, II/ 2–69.
- 14
- 14aH. Okada, T. W. Mak, Nat. Rev. Cancer 2004, 4, 592–603;
- 14bJ. Marx, Science 1993, 259, 760–761;
- 14cG. T. Williams, Cell 1991, 65, 1097–1098.