Computational Enzyme Design
Dr. Gert Kiss
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles CA, 90095 (USA)
Current address: Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
Search for more papers by this authorDr. Nihan Çelebi-Ölçüm
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles CA, 90095 (USA)
Current address: Yeditepe University, Department of Chemical Engineering, Istanbul (Turkey)
Search for more papers by this authorDr. Rocco Moretti
Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 (USA)
Search for more papers by this authorProf. Dr. David Baker
Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Dr. K. N. Houk
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles CA, 90095 (USA)
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles CA, 90095 (USA)Search for more papers by this authorDr. Gert Kiss
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles CA, 90095 (USA)
Current address: Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
Search for more papers by this authorDr. Nihan Çelebi-Ölçüm
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles CA, 90095 (USA)
Current address: Yeditepe University, Department of Chemical Engineering, Istanbul (Turkey)
Search for more papers by this authorDr. Rocco Moretti
Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 (USA)
Search for more papers by this authorProf. Dr. David Baker
Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Dr. K. N. Houk
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles CA, 90095 (USA)
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles CA, 90095 (USA)Search for more papers by this authorGraphical Abstract
The “inside-out” approach to computer-based enzyme design unites the newest developments in the areas of computational chemistry and biology. This has enabled the design of proteins that catalyze reactions not accelerated in nature. The achievements and limitations of the current technology are highlighted and compared to other methods.
Abstract
Recent developments in computational chemistry and biology have come together in the “inside-out” approach to enzyme engineering. Proteins have been designed to catalyze reactions not previously accelerated in nature. Some of these proteins fold and act as catalysts, but the success rate is still low. The achievements and limitations of the current technology are highlighted and contrasted to other protein engineering techniques. On its own, computational “inside-out” design can lead to the production of catalytically active and selective proteins, but their kinetic performances fall short of natural enzymes. When combined with directed evolution, molecular dynamics simulations, and crowd-sourced structure-prediction approaches, however, computational designs can be significantly improved in terms of binding, turnover, and thermal stability.
References
- 1W. Kühne, FEBS Lett. 1976, 62, E 4–E7.
- 2L. Pauling, Chem. Eng. News 1946, 24( 10), 1375–1377.
- 3L. Pauling, General Chemistry: an Introduction to Descriptive Chemistry and Modern Chemical Theory, Freeman, San Francisco, 1947.
- 4C. C. Blake, D. F. Koenig, G. A. Mair, A. C. North, D. C. Phillips, V. R. Sarma, Nature 1965, 206, 757–761.
- 5A. Warshel, J. Biol. Chem. 1998, 273, 27035–27038.
- 6A. Radzicka, R. Wolfenden, Science 1995, 267, 90–93.
- 7X. Zhang, K. N. Houk, Acc. Chem. Res. 2005, 38, 379–385.
- 8D. R. Edwards, D. C. Lohman, R. Wolfenden, J. Am. Chem. Soc. 2012, 134, 525–531.
- 9A. Radzicka, R. Wolfenden, J. Am. Chem. Soc. 1996, 118, 6105–6109.
- 10R. Wolfenden, X. Lu, G. Young, J. Am. Chem. Soc. 1998, 120, 6814–6815.
- 11E. A. Taylor, D. R. Palmer, J. A. Gerlt, J. Am. Chem. Soc. 2001, 123, 5824–5825.
- 12R. A. R. Bryant, D. E. Hansen, J. Am. Chem. Soc. 1996, 118, 5498–5499.
- 13K. Houk, A. G. Leach, S. P. Kim, X. Zhang, Angew. Chem. 2003, 115, 5020–5046; Angew. Chem. Int. Ed. 2003, 42, 4872–4897.
- 14J. D. Stewart, Adv. Appl. Microbiol. 2006, 59, 31–52.
- 15T. Furuya, K. Kino, Appl. Microbiol. Biotechnol. 2010, 86, 991–1002.
- 16J. A. Gerlt, P. C. Babbitt, Curr. Opin. Chem. Biol. 2009, 13, 10–18.
- 17 Directed Enzyme Evolution: Screening and Selection Methods (Eds.: ), Humana, New York, 2003.
- 18F. H. Arnold, G. Georgiou, P. C. Cirino, K. M. Mayer, D. Umeno, Directed Evolution Library Creation, Humana, New York, 2003.
10.1385/159259395X Google Scholar
- 19J. D. Bloom, M. M. Meyer, P. Meinhold, C. R. Otey, D. MacMillan, F. H. Arnold, Curr. Opin. Struct. Biol. 2005, 15, 447–452.
- 20C. Jäckel, P. Kast, D. Hilvert, Annu. Rev. Biophys. 2008, 37, 153–173.
- 21S. Bershtein, D. S. Tawfik, Curr. Opin. Chem. Biol. 2008, 12, 151–158.
- 22D. Hilvert, Annu. Rev. Biochem. 2000, 69, 751–793.
- 23P. Wentworth, Jr., Science 2002, 296, 2247–2249.
- 24Y. Xu, N. Yamamoto, K. D. Janda, Bioorg. Med. Chem. 2004, 12, 5247–5268.
- 25S. C. Pan, B. List, Ernst Schering Found Symp. Proc. 2007, 1–43.
- 26T. Drepper, T. Eggert, W. Hummel, C. Leggewie, M. Pohl, F. Rosenau, S. Wilhelm, K.-E. Jaeger, Biotechnol. J. 2006, 1, 777–786.
- 27V. Nanda, R. L. Koder, Nat. Chem. 2010, 2, 15–24.
- 28A. Tramontano, K. D. Janda, R. A. Lerner, Science 1986, 234, 1566–1570.
- 29S. J. Pollack, J. W. Jacobs, P. G. Schultz, Science 1986, 234, 1570–1573.
- 30P. Wentworth, Jr., K. D. Janda, Curr. Opin. Chem. Biol. 1998, 2, 138–144.
- 31L. Pauling, Nature 1948, 161, 707–709.
- 32W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969.
- 33M. Arnó, L. R. Domingo, Int. J. Quantum Chem. 2001, 83, 338–347.
- 34B. G. Miller, R. Wolfenden, Annu. Rev. Biochem. 2002, 71, 847–885.
- 35J. D. Stewart, S. J. Benkovic, Chem. Soc. Rev. 1993, 22, 213.
- 36P. A. Patten, N. S. Gray, P. L. Yang, C. B. Marks, G. J. Wedemayer, J. J. Boniface, R. C. Stevens, P. G. Schultz, Science 1996, 271, 1086–1091.
- 37A. Tramontano, B. Ivanov, G. Gololobov, S. Paul, Appl. Biochem. Biotechnol. 2000, 83, 233–242; discussion A. Tramontano, B. Ivanov, G. Gololobov, S. Paul, Appl. Biochem. Biotechnol. 2000, 83, 242–243.
- 38X. Wu, T. Zhou, J. Zhu, B. Zhang, I. Georgiev, C. Wang, X. Chen, N. S. Longo, M. Louder, K. McKee, S. O’Dell, S. Perfetto, S. D. Schmidt, W. Shi, L. Wu, Y. Yang, Science 2011, 333, 1593–1602.
- 39J. S. McLellan, M. Pancera, C. Carrico, J. Gorman, J.-P. Julien, R. Khayat, R. Louder, R. Pejchal, M. Sastry, K. Dai, et al., Nature 2011, 480, 336–343.
- 40T. Wojcik, K. Kiec-Kononowicz, Curr. Med. Chem. 2008, 15, 1606–1615.
- 41D. Hilvert, K. W. Hill, K. D. Nared, M. T. M. Auditor, J. Am. Chem. Soc. 1989, 111, 9261–9262.
- 42J. Xu, Q. Deng, J. Chen, K. N. Houk, J. Bartek, D. Hilvert, I. A. Wilson, Science 1999, 286, 2345–2348.
- 43J. Chen, Q. Deng, R. Wang, K. Houk, D. Hilvert, ChemBioChem 2000, 1, 255–261.
10.1002/1439-7633(20001117)1:4<255::AID-CBIC255>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 44V. E. Gouverneur, K. N. Houk, B. de Pascual-Teresa, B. Beno, K. D. Janda, R. A. Lerner, Science 1993, 262, 204–208.
- 45A. Heine, E. A. Stura, J. T. Yli-Kauhaluoma, C. Gao, Q. Deng, B. R. Beno, K. N. Houk, K. D. Janda, I. A. Wilson, Science 1998, 279, 1934–1940.
- 46C. E. Cannizzaro, J. A. Ashley, K. D. Janda, K. N. Houk, J. Am. Chem. Soc. 2003, 125, 2489–2506.
- 47N. Bensel, N. Bahr, M. Reymond, C. Schenkels, J.-L. Reymond, Helv. Chim. Acta 1999, 82, 44–52.
- 48M. Hugot, N. Bensel, M. Vogel, M. T. Reymond, B. Stadler, J.-L. Reymond, U. Baumann, Proc. Natl. Acad. Sci. USA 2002, 99, 9674–9678.
- 49A. G. Leach, K. N. Houk, J.-L. Reymond, J. Org. Chem. 2004, 69, 3683–3692.
- 50S. P. Kim, A. G. Leach, K. N. Houk, J. Org. Chem. 2002, 67, 4250–4260.
- 51S. N. Thorn, R. G. Daniels, M. T. Auditor, D. Hilvert, Nature 1995, 373, 228–230.
- 52J. Na, K. N. Houk, D. Hilvert, J. Am. Chem. Soc. 1996, 118, 6462–6471.
- 53Y. Hu, K. N. Houk, K. Kikuchi, K. Hotta, D. Hilvert, J. Am. Chem. Soc. 2004, 126, 8197–8205.
- 54M. L. Casey, D. S. Kemp, K. G. Paul, D. D. Cox, J. Org. Chem. 1973, 38, 2294–2301.
- 55D. S. Kemp, M. L. Casey, J. Am. Chem. Soc. 1973, 95, 6670–6680.
- 56Y. Li, M. N. Paddon-Row, K. N. Houk, J. Am. Chem. Soc. 1988, 110, 3684–3686.
- 57J. Wagner, R. A. Lerner, C. F. Barbas, Science 1995, 270, 1797–1800.
- 58C. F. Barbas III, A. Heine, G. Zhong, T. Hoffmann, S. Gramatikova, R. Björnestedt, B. List, J. Anderson, E. A. Stura, I. A. Wilson, R. A. Lerner, Science 1997, 278, 2085–2092.
- 59T. Hoffmann, G. Zhong, B. List, D. Shabat, J. Anderson, S. Gramatikova, R. A. Lerner, C. F. Barbas, J. Am. Chem. Soc. 1998, 120, 2768–2779.
- 60B. List, C. F. Barbas, R. A. Lerner, Proc. Natl. Acad. Sci. USA 1998, 95, 15351–15355.
- 61G. Zhong, R. A. Lerner, C. F. Barbas III, Angew. Chem. 1999, 111, 3957–3960;
10.1002/(SICI)1521-3757(19991216)111:24<3957::AID-ANGE3957>3.0.CO;2-H Web of Science® Google ScholarAngew. Chem. Int. Ed. 1999, 38, 3738–3741.10.1002/(SICI)1521-3773(19991216)38:24<3738::AID-ANIE3738>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 62M. Arnó, L. R. Domingo, Org. Biomol. Chem. 2003, 1, 637–643.
- 63D. S. Kemp, K. G. Paul, J. Am. Chem. Soc. 1975, 97, 7305–7312.
- 64D. S. Kemp, D. D. Cox, K. G. Paul, J. Am. Chem. Soc. 1975, 97, 7312–7318.
- 65H. Zipse, G. Apaydin, K. N. Houk, J. Am. Chem. Soc. 1995, 117, 8608–8617.
- 66J. Gao, J. Am. Chem. Soc. 1995, 117, 8600–8607.
- 67C. Lewis, T. Kramer, S. Robinson, D. Hilvert, Science 1991, 253, 1019–1022.
- 68K. Hotta, H. Lange, D. J. Tantillo, K. N. Houk, D. Hilvert, I. A. Wilson, J. Mol. Biol. 2000, 302, 1213–1225.
- 69G. Ujaque, D. J. Tantillo, Y. Hu, K. Houk, K. Hotta, D. Hilvert, J. Comput. Chem. 2003, 24, 98–110.
- 70K. D. Janda, C. G. Shevlin, R. A. Lerner, Science 1993, 259, 490–493.
- 71K. Gruber, B. Zhou, K. N. Houk, R. A. Lerner, C. G. Shevlin, I. A. Wilson, Biochemistry 1999, 38, 7062–7074.
- 72J. Na, K. N. Houk, C. G. Shevlin, K. D. Janda, R. A. Lerner, J. Am. Chem. Soc. 1993, 115, 8453–8454.
- 73J. Na, K. N. Houk, J. Am. Chem. Soc. 1996, 118, 9204–9205.
- 74J. M. Coxon, A. J. Thorpe, J. Am. Chem. Soc. 1999, 121, 10955–10957.
- 75K. D. Janda, C. G. Shevlin, R. A. Lerner, J. Am. Chem. Soc. 1995, 117, 2659–2660.
- 76K. D. Janda, D. Schloeder, S. J. Benkovic, R. A. Lerner, Science 1988, 241, 1188–1191.
- 77J. D. Stewart, J. F. Krebs, G. Siuzdak, A. J. Berdis, D. B. Smithrud, S. J. Benkovic, Proc. Natl. Acad. Sci. USA 1994, 91, 7404–7409.
- 78C. Gao, B. J. Lavey, C.-H. L. Lo, A. Datta, P. Wentworth, K. D. Janda, J. Am. Chem. Soc. 1998, 120, 2211–2217.
- 79V. A. Roberts, J. Stewart, S. J. Benkovic, E. D. Getzoff, J. Mol. Biol. 1994, 235, 1098–1116.
- 80M. M. Thayer, E. H. Olender, A. S. Arvai, C. K. Koike, I. L. Canestrelli, J. D. Stewart, S. J. Benkovic, E. D. Getzoff, V. A. Roberts, J. Mol. Biol. 1999, 291, 329–345.
- 81L. T. Chong, P. Bandyopadhyay, T. S. Scanlan, I. D. Kuntz, P. A. Kollman, J. Comput. Chem. 2003, 24, 1371–1377.
- 82Y. M. Chook, H. Ke, W. N. Lipscomb, Proc. Natl. Acad. Sci. USA 1993, 90, 8600–8603.
- 83A. Y. Lee, P. A. Karplus, B. Ganem, J. Clardy, J. Am. Chem. Soc. 1995, 117, 3627–3628.
- 84M. R. Haynes, E. A. Stura, D. Hilvert, I. A. Wilson, Science 1994, 263, 646–652.
- 85P. Schultz, Science 1988, 240, 426–433.
- 86O. Wiest, K. N. Houk, J. Am. Chem. Soc. 1995, 117, 11628–11639.
- 87U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Nature 2012, 485, 185–194.
- 88M. T. Reetz, P. Soni, J. P. Acevedo, J. Sanchis, Angew. Chem. 2009, 121, 8418–8422;
10.1002/ange.200904209 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 8268–8272.
- 89M. Zumárraga, T. Bulter, S. Shleev, J. Polaina, A. Martínez-Arias, F. J. Plou, A. Ballesteros, M. Alcalde, Chem. Biol. 2007, 14, 1052–1064.
- 90J. Karanicolas, J. E. Corn, I. Chen, L. A. Joachimiak, O. Dym, S. H. Peck, S. Albeck, T. Unger, W. Hu, G. Liu, S. Delbecq, G. Montelione, C. Spiegel, D. R. Liu, D. Baker, Mol. Cell 2011, 42, 250–260.
- 91G. J. Williams, C. Zhang, J. S. Thorson, Nat. Chem. Biol. 2007, 3, 657–662.
- 92S. E. Deacon, M. J. McPherson, ChemBioChem 2011, 12, 593–601.
- 93R. D. Gupta, M. Goldsmith, Y. Ashani, Y. Simo, G. Mullokandov, H. Bar, M. Ben-David, H. Leader, R. Margalit, I. Silman, J. L. Sussman, D. S. Tawfik, Nat. Chem. Biol. 2011, 7, 120–125.
- 94S. Bartsch, R. Kourist, U. T. Bornscheuer, Angew. Chem. 2008, 120, 1531–1534;
10.1002/ange.200704606 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 1508–1511.
- 95M. T. Reetz, Angew. Chem. 2011, 122, 144–182;
10.1002/ange.201000826 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 138–174.
- 96M. T. Reetz, B. Brunner, T. Schneider, F. Schulz, C. M. Clouthier, M. M. Kayser, Angew. Chem. 2004, 116, 4167–4170;
10.1002/ange.200460272 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 4075–4078.
- 97S. Park, K. L. Morley, G. P. Horsman, M. Holmquist, K. Hult, R. J. Kazlauskas, Chem. Biol. 2005, 12, 45–54.
- 98R. J. Fox, S. C. Davis, E. C. Mundorff, L. M. Newman, V. Gavrilovic, S. K. Ma, L. M. Chung, C. Ching, S. Tam, S. Muley, J. Grate, J. Gruber, J. C. Whitman, R. A. Sheldon, G. W. Huisman, Nat. Biotechnol. 2007, 25, 338–344.
- 99P. L. Bergquist, R. A. Reeves, M. D. Gibbs, Biomol. Eng. 2005, 22, 63–72.
- 100G. Amitai, R. D. Gupta, D. S. Tawfik, HFSP J. 2007, 1, 67–78.
- 101J. D. Bloom, P. A. Romero, Z. Lu, F. H. Arnold, Biol. Direct 2007, 2, 17.
- 102B. Seelig, J. W. Szostak, Nature 2007, 448, 828–831.
- 103J.-C. Baret, O. J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M. L. Samuels, J. B. Hutchison, J. J. Agresti, D. R. Link, D. A. Weitz, A. D. Griffiths, Lab Chip 2009, 9, 1850–1858.
- 104J.-P. Goddard, J.-L. Reymond, Curr. Opin. Biotechnol. 2004, 15, 314–322.
- 105E. M. Brustad, F. H. Arnold, Curr. Opin. Chem. Biol. 2011, 15, 201–210.
- 106C. K. Savile, J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam, W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz, J. Brands, P. N. Devine, G. W. Huisman, G. J. Hughes, Science 2010, 329, 305–309.
- 107T. T. Li, J. J. Liang, A. A. Ambrogelly, T. T. Brennan, G. G. Gloor, G. G. Huisman, J. J. Lalonde, A. A. Lekhal, B. B. Mijts, S. S. Muley, L. Newman, M. Tobin, G. Wong, A. Zaks, X. Zhang, J. Am. Chem. Soc. 2012, 134, 6467–6472.
- 108M. Bocola, N. Otte, K.-E. Jaeger, M. T. Reetz, W. Thiel, ChemBioChem 2004, 5, 214–223.
- 109M. T. Reetz, M. Puls, J. D. Carballeira, A. Vogel, K.-E. Jaeger, T. Eggert, W. Thiel, M. Bocola, N. Otte, ChemBioChem 2007, 8, 106–112.
- 110G. A. Behrens, A. Hummel, S. K. Padhi, S. Schaetzle, U. T. Bornscheuer, Adv. Synth. Catal. 2011, 353, 2191–2215.
- 111G. A. Strohmeier, H. Pichler, O. May, M. Gruber-Khadjawi, Chem. Rev. 2011, 111, 4141–4164.
- 112A. S. Bommarius, J. K. Blum, M. J. Abrahamson, Curr. Opin. Chem. Biol. 2011, 15, 194–200.
- 113G.-W. Zheng, J.-H. Xu, Curr. Opin. Biotechnol. 2011, 22, 784–792.
- 114O. Khersonsky, D. S. Tawfik, Annu. Rev. Biochem. 2010, 79, 471–505.
- 115A. C. Joerger, S. Mayer, A. R. Fersht, Proc. Natl. Acad. Sci. USA 2003, 100, 5694–5699.
- 116G. J. Poelarends, J. J. Almrud, H. Serrano, J. E. Darty, W. H. Johnson, M. L. Hackert, C. P. Whitman, Biochemistry 2006, 45, 7700–7708.
- 117W. S. Yew, J. Akana, E. L. Wise, I. Rayment, J. A. Gerlt, Biochemistry 2005, 44, 1807–1815.
- 118E. L. Wise, W. S. Yew, J. Akana, J. A. Gerlt, I. Rayment, Biochemistry 2005, 44, 1816–1823.
- 119D. M. Z. Schmidt, E. C. Mundorff, M. Dojka, E. Bermudez, J. E. Ness, S. Govindarajan, P. C. Babbitt, J. Minshull, J. A. Gerlt, Biochemistry 2003, 42, 8387–8393.
- 120Y. Terao, K. Miyamoto, H. Ohta, Chem. Commun. 2006, 3600–3602.
- 121Y. Ijima, K. Matoishi, Y. Terao, N. Doi, H. Yanagawa, H. Ohta, Chem. Commun. 2005, 877–879.
- 122Y. Terao, K. Miyamoto, H. Ohta, Appl. Microbiol. Biotechnol. 2006, 73, 647–653.
- 123H. Xiang, L. Luo, K. L. Taylor, D. Dunaway-Mariano, Biochemistry 1999, 38, 7638–7652.
- 124R. B. Hamed, E. T. Batchelar, I. J. Clifton, C. J. Schofield, Cell. Mol. Life Sci. 2008, 65, 2507–2527.
- 125R. B. Hill, D. P. Raleigh, A. Lombardi, W. F. DeGrado, Acc. Chem. Res. 2000, 33, 745–754.
- 126B. R. Gibney, F. Rabanal, J. J. Skalicky, A. J. Wand, P. L. Dutton, J. Am. Chem. Soc. 1997, 119, 2323–2324.
- 127B. R. Gibney, F. Rabanal, J. J. Skalicky, A. J. Wand, P. L. Dutton, J. Am. Chem. Soc. 1999, 121, 4952–4960.
- 128K. T. Simons, C. Kooperberg, E. Huang, D. Baker, J. Mol. Biol. 1997, 268, 209–225.
- 129B. I. Dahiyat, S. L. Mayo, Science 1997, 278, 82–87.
- 130G. G. Dantas, B. B. Kuhlman, D. D. Callender, M. M. Wong, D. D. Baker, J. Mol. Biol. 2003, 332, 449–460.
- 131B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard, D. Baker, Science 2003, 302, 1364–1368.
- 132P.-S. Huang, J. J. Love, S. L. Mayo, Protein Sci. 2007, 16, 2770–2774.
- 133S. J. Fleishman, T. A. Whitehead, D. C. Ekiert, C. Dreyfus, J. E. Corn, E.-M. Strauch, I. A. Wilson, D. Baker, Science 2011, 332, 816–821.
- 134H. Yin, J. S. Slusky, B. W. Berger, R. S. Walters, G. Vilaire, R. I. Litvinov, J. D. Lear, G. A. Caputo, J. S. Bennett, W. F. DeGrado, Science 2007, 315, 1817–1822.
- 135S. J. Shandler, I. V. Korendovych, D. T. Moore, K. B. Smith-Dupont, C. N. Streu, R. I. Litvinov, P. C. Billings, F. Gai, J. S. Bennett, W. F. DeGrado, J. Am. Chem. Soc. 2011, 133, 12378–12381.
- 136G. Grigoryan, Y. H. Kim, R. Acharya, K. Axelrod, R. M. Jain, L. Willis, M. Drndic, J. M. Kikkawa, W. F. DeGrado, Science 2011, 332, 1071–1076.
- 137B. S. Chevalier, T. Kortemme, M. S. Chadsey, D. Baker, R. J. Monnat, B. L. Stoddard, Mol. Cell 2002, 10, 895–905.
- 138J. Ashworth, J. J. Havranek, C. M. Duarte, D. Sussman, R. J. Monnat, B. L. Stoddard, D. Baker, Nature 2006, 441, 656–659.
- 139U. Y. Ulge, D. A. Baker, R. J. Monnat, Nucleic Acids Res. 2011, 39, 4330–4339.
- 140J. Ashworth, G. K. Taylor, J. J. Havranek, S. A. Quadri, B. L. Stoddard, D. Baker, Nucleic Acids Res. 2010, 38, 5601–5608.
- 141S. B. Thyme, J. Jarjour, R. Takeuchi, J. J. Havranek, J. Ashworth, A. M. Scharenberg, B. L. Stoddard, D. Baker, Nature 2009, 461, 1300–1304.
- 142J. S. Marvin, H. W. Hellinga, Proc. Natl. Acad. Sci. USA 2001, 98, 4955–4960.
- 143W. Yang, L. M. Jones, L. Isley, Y. Ye, H.-W. Lee, A. Wilkins, Z.-R. Liu, H. W. Hellinga, R. Malchow, M. Ghazi, J. J. Yang, J. Am. Chem. Soc. 2003, 125, 6165–6171.
- 144L. L. Looger, M. A. Dwyer, J. J. Smith, H. W. Hellinga, Nature 2003, 423, 185–190.
- 145M. Allert, S. S. Rizk, L. L. Looger, H. W. Hellinga, Proc. Natl. Acad. Sci. USA 2004, 101, 7907–7912.
- 146B. Schreier, C. Stumpp, S. Wiesner, B. Hocker, Proc. Natl. Acad. Sci. USA 2009, 106, 18491–18496.
- 147F. E. Boas, P. B. Harbury, J. Mol. Biol. 2008, 380, 415–424.
- 148H. C. Fry, A. Lehmann, J. G. Saven, W. F. DeGrado, M. J. Therien, J. Am. Chem. Soc. 2010, 132, 3997–4005.
- 149A. Morin, K. W. Kaufmann, C. Fortenberry, J. M. Harp, L. S. Mizoue, J. Meiler, Protein Eng. Des. Sel. 2011, 24, 503–516.
- 150K. Johnsson, R. K. Allemann, H. Widmer, S. A. Benner, Nature 1993, 365, 530–532.
- 151R. A. Lerner, S. J. Benkovic, P. G. Schultz, Science 1991, 252, 659–667.
- 152T. Sasaki, E. T. Kaiser, J. Am. Chem. Soc. 1989, 111, 380–381.
- 153K. S. Broo, L. Brive, P. Ahlberg, L. Baltzer, J. Am. Chem. Soc. 1997, 119, 11362–11372.
- 154P. Rossi, P. Tecilla, L. Baltzer, P. Scrimin, Chem. Eur. J. 2004, 10, 4163–4170.
- 155B. Lovejoy, S. Choe, D. Cascio, D. K. McRorie, W. F. DeGrado, D. Eisenberg, Science 1993, 259, 1288–1293.
- 156C. Tommos, J. J. Skalicky, D. L. Pilloud, A. J. Wand, P. L. Dutton, Biochemistry 1999, 38, 9495–9507.
- 157S. Chakraborty, J. Y. Kravitz, P. W. Thulstrup, L. Hemmingsen, W. F. DeGrado, V. L. Pecoraro, Angew. Chem. 2011, 123, 2097–2101; Angew. Chem. Int. Ed. 2011, 50, 2049–2053.
- 158C. M. Summa, M. M. Rosenblatt, J.-K. Hong, J. D. Lear, W. F. DeGrado, J. Mol. Biol. 2002, 321, 923–938.
- 159D. N. Bolon, S. L. Mayo, Proc. Natl. Acad. Sci. USA 2001, 98, 14274–14279.
- 160C. Pabo, Nature 1983, 301, 200–200.
- 161J. W. Ponder, F. M. Richards, J. Mol. Biol. 1987, 193, 775–791.
- 162J. Bowie, R. Luthy, D. Eisenberg, Science 1991, 253, 164–170.
- 163K. Yue, K. A. Dill, Proc. Natl. Acad. Sci. USA 1992, 89, 4163–4167.
- 164H. M. Berman, Nucleic Acids Res. 2000, 28, 235–242.
- 165A. Zanghellini, L. Jiang, A. M. Wollacott, G. Cheng, J. Meiler, E. A. Althoff, D. Röthlisberger, D. Baker, Protein Sci. 2006, 15, 2785–2794.
- 166D. Tantillo, Stimulating Concepts in Chemistry, Wiley-VCH, Weinheim, 2000.
- 167F. Richter, A. Leaver-Fay, S. D. Khare, S. Bjelic, D. Baker, PLoS ONE 2011, 6, e 19230.
- 168A. J. T. Smith, R. Müller, M. D. Toscano, P. Kast, H. W. Hellinga, D. Hilvert, K. N. Houk, J. Am. Chem. Soc. 2008, 130, 15361–15373.
- 169G. Kiss, D. Röthlisberger, D. Baker, K. N. Houk, Protein Sci. 2010, 19, 1760–1773.
- 170L. Jiang, E. A. Althoff, F. R. Clemente, L. Doyle, D. Röthlisberger, A. Zanghellini, J. L. Gallaher, J. L. Betker, F. Tanaka, C. F. Barbas, D. Hilvert, K. N. Houk, B. L. Stoddard, D. Baker, Science 2008, 319, 1387–1391.
- 171D. Röthlisberger, O. Khersonsky, A. M. Wollacott, L. Jiang, J. DeChancie, J. Betker, J. L. Gallaher, E. A. Althoff, A. Zanghellini, O. Dym, S. Albeck, K. N. Houk, D. S. Tawfik, D. Baker, Nature 2008, 453, 190–195.
- 172J. B. Siegel, A. Zanghellini, H. M. Lovick, G. Kiss, A. R. Lambert, J. L. St. Clair, J. L. Gallaher, D. Hilvert, M. H. Gelb, B. L. Stoddard, K. N. Houk, F. E. Michael, D. Baker, Science 2010, 329, 309–313.
- 173F. W. Studier, Protein Expression Purif. 2005, 41, 207–234.
- 174E. Sulkowski, Trends Biotechnol. 1985, 3, 1–7.
- 175R. Janknecht, G. de Martynoff, J. Lou, R. A. Hipskind, A. Nordheim, H. G. Stunnenberg, Proc. Natl. Acad. Sci. USA 1991, 88, 8972–8976.
- 176 Guide to Protein Purification (Eds.: ), Academic Press, 2009.
- 177T. Gefflaut, C. Blonski, J. Perie, M. Willson, Prog. Biophys. Mol. Biol. 1995, 63, 301–340.
- 178A. Heine, Science 2001, 294, 369–374.
- 179J. Z. Ruscio, J. E. Kohn, K. A. Ball, T. Head-Gordon, J. Am. Chem. Soc. 2009, 131, 14111–14115.
- 180J. K. Lassila, D. Baker, D. Herschlag, Proc. Natl. Acad. Sci. USA 2010, 107, 4937–4942.
- 181F. Hollfelder, A. J. Kirby, D. S. Tawfik, J. Am. Chem. Soc. 1997, 119, 9578–9579.
- 182I. V. Korendovych, D. W. Kulp, Y. Wu, H. Cheng, H. Roder, W. F. DeGrado, Proc. Natl. Acad. Sci. USA 2011, 108, 6823–6827.
- 183A. J. Kirby, Acc. Chem. Res. 1997, 30, 290–296.
- 184D. S. Kemp, Nature 1995, 373, 196–197.
- 185O. Khersonsky, D. Röthlisberger, O. Dym, S. Albeck, C. J. Jackson, D. Baker, D. S. Tawfik, J. Mol. Biol. 2010, 396, 1025–1042.
- 186O. Khersonsky, D. Röthlisberger, A. M. Wollacott, P. Murphy, O. Dym, S. Albeck, G. Kiss, K. N. Houk, D. Baker, D. S. Tawfik, J. Mol. Biol. 2011, 407, 391–412.
- 187O. Khersonsky, G. Kiss, D. Röthlisberger, O. Dym, S. Albeck, K. N. Houk, D. Baker, D. S. Tawfik, Proc. Natl. Acad. Sci. USA 2012, 109, 10358–10363.
- 188A. N. Alexandrova, D. Röthlisberger, D. Baker, W. L. Jorgensen, J. Am. Chem. Soc. 2008, 130, 15907–15915.
- 189M. P. Frushicheva, J. Cao, Z. T. Chu, A. Warshel, Proc. Natl. Acad. Sci. USA 2010, 107, 16869–16874.
- 190M. P. Frushicheva, J. Cao, A. Warshel, Biochemistry 2011, 50, 3849–3858.
- 191H. K. Privett, G. Kiss, T. M. Lee, R. Blomberg, R. A. Chica, L. M. Thomas, D. Hilvert, K. N. Houk, S. L. Mayo, Proc. Natl. Acad. Sci. USA 2012, 109, 3790–3795.
- 192T. Steiner, Angew. Chem. 2002, 114, 50–80;
10.1002/1521-3757(20020104)114:1<50::AID-ANGE50>3.0.CO;2-H Google ScholarAngew. Chem. Int. Ed. 2002, 41, 48–76.
- 193L. Lo Leggio, S. Kalogiannis, K. Eckert, S. C. Teixeira, M. K. Bhat, C. Andrei, R. W. Pickersgill, S. Larsen, FEBS Lett. 2001, 509, 303–308.
- 194B. I. Dahiyat, D. B. Gordon, S. L. Mayo, Protein Sci. 1997, 6, 1333–1337.
- 195S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popović, F. Players, Nature 2010, 466, 756–760.
- 196F. Khatib, S. Cooper, M. D. Tyka, K. Xu, I. Makedon, Z. Popović, D. Baker, F. Players, Proc. Natl. Acad. Sci. USA 2011, 108, 18949–18953.
- 197F. Khatib, F. DiMaio, Foldit Contenders Group, Foldit Void Crushers Group, S. Cooper, M. Kazmierczyk, M. Gilski, S. Krzywda, H. Zábranská, I. Pichová, J. Thompson, Z. Popović, M. Jaskolski, D. Baker, Nat. Struct. Mol. Biol. 2011, 18, 1175–1177
- 198C. B. Eiben, J. B. Siegel, J. B. Bale, S. Cooper, F. Khatib, B. W. Shen, F. Players, B. L. Stoddard, Z. Popović, D. Baker, Nat. Biotechnol. 2012, 30, 190–192.
- 199D. A. Kraut, P. A. Sigala, T. D. Fenn, D. Herschlag, Proc. Natl. Acad. Sci. USA 2010, 107, 1960–1965.
- 200J. Villà, A. Warshel, J. Phys. Chem. B 2001, 105, 7887–7907.
- 201W. R. Cannon, S. F. Singleton, S. J. Benkovic, Nat. Struct. Mol. Biol. 1996, 3, 821–833.
- 202H. Liu, A. Warshel, Biochemistry 2007, 46, 6011–6025.
- 203E. W. Debler, R. Müller, D. Hilvert, I. A. Wilson, Proc. Natl. Acad. Sci. USA 2009, 106, 18539–18544.
- 204A. Korkegian, M. E. Black, D. Baker, B. L. Stoddard, Science 2005, 308, 857–860.
- 205M. Lehmann, L. Pasamontes, S. F. Lassen, M. Wyss, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2000, 1543, 408–415.
- 206R. Carlson, Nat. Biotechnol. 2009, 27, 1091–1094.
- 207M. Baker, Nature 2011, 473, 403–408.
- 208J. Tian, K. Ma, I. Saaem, Mol. BioSyst. 2009, 5, 714–722.
- 209S. D. Khare, Y. Kipnis, P. J. Greisen, R. Takeuchi, Y. Ashani, M. Goldsmith, Y. Song, J. L. Gallaher, I. Silman, H. Leader, J. L. Sussman, Nat. Chem. Biol. 2012, 8, 294–300.
- 210A. C. Hemmert, T. C. Otto, R. A. Chica, M. Wierdl, J. S. Edwards, S. M. Lewis, S. L. Lewis, C. C. Edwards, L. Tsurkan, C. L. Cadieux, S. A. Kasten, J. R. Cashman, S. L. Mayo, P. M. Potter, D. M. Cerasoli, M. R. Redinbo, PLoS ONE 2011, 6, e 17441.
- 211F. Richter, R. Blomberg, S. D. Khare, G. Kiss, A. P. Kuzin, A. J. T. Smith, J. Gallaher, Z. Pianowski, R. C. Helgeson, A. Grjasnow, R. Xiao, J. Seetharaman, M. Su, S. Vorobiev, S. Lew, F. Forouhar, G. J. Kornhaber, J. F. Hunt, G. T. Montelione, L. Tong, K. N. Houk, D. Hilvert, D. Baker, J. Am. Chem. Soc. 2012, 134, 16197–16206.
- 212S. R. Gordon, E. J. Stanley, S. Wolf, A. Toland, S. J. Wu, D. Hadidi, J. H. Mills, D. Baker, I. S. Pultz, J. B. Siegel, J. Am. Chem. Soc. 2012, DOI: .
- 213P. A. M. Dirac, Proc. R. Soc. London Ser. A 1929, 123, 714–733.