Magic Ring Rotaxanes by Olefin Metathesis†
Andreas F. M. Kilbinger Dr.
Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA, Fax: (+1) 626–564–9297
Search for more papers by this authorStuart J. Cantrill Dr.
Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA, Fax: (+1) 626–564–9297
Search for more papers by this authorAndrew W. Waltman
Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA, Fax: (+1) 626–564–9297
Search for more papers by this authorMichael W. Day Dr.
Beckman Institute, X-Ray Crystallography Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
Search for more papers by this authorRobert H. Grubbs Prof.
Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA, Fax: (+1) 626–564–9297
Search for more papers by this authorAndreas F. M. Kilbinger Dr.
Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA, Fax: (+1) 626–564–9297
Search for more papers by this authorStuart J. Cantrill Dr.
Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA, Fax: (+1) 626–564–9297
Search for more papers by this authorAndrew W. Waltman
Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA, Fax: (+1) 626–564–9297
Search for more papers by this authorMichael W. Day Dr.
Beckman Institute, X-Ray Crystallography Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
Search for more papers by this authorRobert H. Grubbs Prof.
Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA, Fax: (+1) 626–564–9297
Search for more papers by this authorA.F.M.K. thanks the Alexander von Humboldt Foundation for a Feodor–Lynen Research Fellowship. We thank Dr. Mona Shahgholi for performing the mass spectrometric analyses, Dr. Jennifer Love for assisting with initial NMR spectroscopic measurements, and Dr. Steven Goldberg for valuable comments regarding this manuscript.
Graphical Abstract
Trick or treat? Ruthenium alkylidene catalyzed ring-closing metathesis of crown ether like diene substrates around a dumbbell-shaped secondary ammonium ion affords [2]rotaxanes. The reversible nature of this process has been demonstrated through a “magic ring” synthesis, wherein the preformed olefinic macrocycle and dumbbell-shaped component equilibrate to form the hydrogen-bond-stabilized [2]rotaxane in the presence of a metathesis catalyst (see scheme).
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2003/z51167_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. B. Amabilino, J. F. Stoddart, Chem. Rev. 1995, 95, 2725–2828;
- 1b Molecular Catenanes, Rotaxanes and Knots (Ed ), Wiley-VCH, Weinheim, 1999.
- 2
- 2aV. Bermudez, N. Capron, T. Gase, F. G. Gatti, F. Kajzar, D. A. Leigh, F. Zerbetto, S. W. Zhang, Nature 2000, 406, 608–611;
- 2bJ.-P. Collin, C. Dietrich-Buchecker, P. Gaviña, M. C. Jimenez-Molero, J.-P. Sauvage, Acc. Chem. Res. 2001, 34, 477–487.
- 3
- 3aA. R. Pease, J. F. Stoddart, Struct. Bonding (Berlin) 2001, 99, 189–236;
- 3bY. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J. F. Stoddart, J. R. Heath, ChemPhysChem 2002, 3, 519–525.
10.1002/1439-7641(20020617)3:6<519::AID-CPHC519>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 4For recent examples of kinetically controlled rotaxane syntheses, see
- 4aJ. E. H. Buston, F. Marken, H. L. Anderson, Chem. Commun. 2001, 1046–1047;
- 4bS.-H. Chiu, S. J. Rowan, S. J. Cantrill, J. F. Stoddart, A. J. P. White, D. J. Williams, Chem. Eur. J. 2002, 8, 5170–5183.
10.1002/1521-3765(20021115)8:22<5170::AID-CHEM5170>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 5
- 5aJ.-M. Lehn, Chem. Eur. J. 1999, 5, 2455–2463;
10.1002/(SICI)1521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H CAS Web of Science® Google Scholar
- 5bS. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. 2002, 114, 938–993;
10.1002/1521-3757(20020315)114:6<938::AID-ANGE938>3.0.CO;2-K Google ScholarAngew. Chem. Int. Ed. 2002, 41, 898–952.10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 6For the earliest reported examples of a rotaxane synthesis that utilizes reversible formation of a covalent bond, see I. T. Harrison, J. Chem. Soc. Chem. Commun. 1972, 231–232.
- 7Certain kinetically labile metal–ligand interactions have also been exploited, as the reversible “reaction” step, in the formation of dynamic (organometallic) rotaxanes; for a recent example, see C. A. Hunter, C. M. R. Low, M. J. Packer, S. E. Spey, J. G. Vinter, M. O. Vysotsky, C. Zonta, Angew. Chem. 2001, 113, 2750–2754;
Angew. Chem. Int. Ed. 2001, 40, 2678–2682.
10.1002/1521-3773(20010716)40:14<2678::AID-ANIE2678>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 8
- 8aS. J. Cantrill, S. J. Rowan, J. F. Stoddart, Org. Lett. 1999, 1, 1363–1366;
- 8bP. T. Glink, A. I. Olivia, J. F. Stoddart, A. J. P. White, D. J. Williams, Angew. Chem. 2001, 113, 1922–1927;
10.1002/1521-3757(20010518)113:10<1922::AID-ANGE1922>3.0.CO;2-T Google ScholarAngew. Chem. Int. Ed. 2001, 40, 1870–1875;10.1002/1521-3773(20010518)40:10<1870::AID-ANIE1870>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 8cD. A. Leigh, P. J. Lusby, S. J. Teat, A. J. Wilson, J. K. Y. Wong, Angew. Chem. 2001, 113, 1586–1591;
10.1002/1521-3757(20010417)113:8<1586::AID-ANGE1586>3.0.CO;2-3 Google ScholarAngew. Chem. Int. Ed. 2001, 40, 1538–1543.10.1002/1521-3773(20010417)40:8<1538::AID-ANIE1538>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 9
- 9aA. G. Kolchinski, N. W. Alcock, R. A. Roesner, D. H. Busch, Chem. Commun. 1998, 1437–1438;
- 9bT. Oku, Y. Furusho, T. Takata, J. Polym. Sci. 2003, 41, 119–123.
- 10T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18–29.
- 11
- 11aT. J. Kidd, D. A. Leigh, A. J. Wilson, J. Am. Chem. Soc. 1999, 121, 1599–1600; for other catenane syntheses employing RCM, see
- 11bD. G. Hamilton, N. Feeder, S. J. Teat, J. K. M. Sanders, New J. Chem. 1998, 1019–1021;
- 11cM. Weck, B. Mohr, J.-P. Sauvage, R. H. Grubbs, J. Org. Chem. 1999, 64, 5463–5471, respectively.
- 12J. A. Wisner, P. D. Beer, M. G. B. Drew, M. R. Sambrook, J. Am. Chem. Soc. 2002, 124, 12 469–12 476. During the course of our investigations, this report of rotaxane formation, by using ring-closing-olefin metathesis, appeared in the literature. Although the authors note that the metathesis reaction is under thermodynamic control, this aspect of the reaction is not investigated further.
- 13
- 13aA. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun. 1995, 1289–1291;
- 13bS. J. Cantrill, A. R. Pease, J. F. Stoddart, J. Chem. Soc. Dalton Trans. 2000, 3715–3734, and references therein.
- 14S. J. Cantrill, D. A. Fulton, A. M. Heiss, A. R. Pease, J. F. Stoddart, A. J. P. White, D. J. Williams, Chem. Eur. J. 2000, 6, 2274–2287.
10.1002/1521-3765(20000616)6:12<2274::AID-CHEM2274>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 15P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100–110.
- 16The association constant for this slowly equilibrating system was determined using the single-point method, see J. C. Adrian, C. S. Wilcox, J. Am. Chem. Soc. 1991, 113, 678–680. It should be noted that, in this case, the Ka value reflects a total association constant, which combines the contributions from both the cis and trans isomers of the crown ether present in solution.
- 17P. R. Ashton, R. A. Bartsch, S. J. Cantrill, R. E. Hanes, Jr.,S. K. Hickingbottom, J. N. Lowe, J. A. Preece, J. F. Stoddart, V. S. Talanov, Z.-H. Wang, Tetrahedron Lett. 1999, 40, 3661–3664.
- 18Hydrogenation of 8 affords the saturated crown ether 15, which was shown (by 1H NMR spectroscopy) to bind dibenzylammonium hexafluorophosphate with a Ka value of 90 M−1. This value differs only slightly from that observed for 8, thus suggesting that the carbon–carbon double bond has little effect upon the ability to bind secondary ammonium ions.
- 19S. J. Cantrill, M. C. T. Fyfe, A. M. Heiss, J. F. Stoddart, A. J. P. White, D. J. Williams, Org. Lett. 2000, 2, 61–64.
- 20Crystal data for 11⋅PF6: [C36H58NO10][PF6]; Mr=809.80; 0.19×0.20×0.24 mm; colorless; monoclinic; spave group P21/n (no. 14), Z=4; a=13.3814(7), b=19.3278(10), c=16.1791(8) Å, β=109.105(1)°; V=3594.0(4) Å3; ρcalcd=1.360 gcm−3; MoKα radiation (λ=0.71073 Å); 2θmax=56.8°; ω-scans on a SMART 1000 ccd; T=98 K; 67 646 reflections measured (all 9326 unique used); −17≤h≤17, −25≤k≤25, −21≤L≤20; Lorentz factor but no absorption correction (μ=0.15 mm−1) applied; structure solved and refined with full-matrix least-squares on F2 with SHELXL-97[27]; 9326 data, 0 restraints, and 583 parameters; R(6046 reflections >2σ(I), all data)=0.070, 0.107; Rw(6046 reflections>2σ(I), all data)=0.109, 0.113; S=2.62; hydrogen atoms on the macrocyle were riding, while those on the cation were unrestrained; greatest final electron density difference excursions of 1.41 e⋅Å3 at 1.02 Å from H(11A) and −1.36 e⋅Å3 at 0.42 Å from C(12).[28]
- 21S. J. Cantrill, G. J. Youn, J. F. Stoddart, D. J. Williams, J. Org. Chem. 2001, 66, 6857–6872.
- 22B. Colonna, L. Echegoyen, Chem. Commun. 2001, 1104–1105.
- 23Hydrogenation of olefin macrocycle 9 affords the saturated analogue 16, which shows little change in the binding affinity for DBA⋅PF6 (Ka∼10 M−1).
- 24Crystal data for 12⋅PF6: [C40H58NO10][PF6]; Mr=857.84; 0.24×0.31×0.33 mm; colorless; monoclinic; space group P21/n (no. 14), Z=4; a=14.3407(6), b=19.2063(8), c=15.8720(7) Å, β=107.353(1)°; V=4172.7(3) Å3; ρcalcd=1.366 gcm−3; MoKα radiation (λ=0.71073 Å); 2θmax=55.4°; ω-scans on a SMART 1000 ccd; T=98 K; 83 324 reflections measured (all 9644 unique used); −18≤h≤18, −25≤k≤24, −21≤L≤21; Lorentz factor but no absorption correction (μ=0.15 mm−1) applied; structure solved and refined with full-matrix least-squares on F2 with SHELXL-97[27]; 9644 data, 235 restraints (distance, planarity, and anisotropic displacement parameter restaints in the macrocylic double bond region which was disordered ca. 1:1 E:Z), and 582 parameters; R(6838 reflections >2σ(I), all data)=0.063, 0.090; Rw(6838 reflections >2σ(I), all data)=0.105, 0.107; S=3.48; all hydrogen atoms were riding on attached atoms; greatest final electron density difference excursions of 0.78 e⋅Å3 and −0.82 e⋅Å.[28]
- 25CD3NO2 is required to ensure complete dissolution of 10⋅PF6.
- 26IMesH2=1,3-dimesityl-4,5-dihydroimidazol-2-ylidene, see M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953–956.
- 27G. M. Sheldrick, SHELXL-97, Program for Structure Refinement, University of Göttingen, Göttingen (Germany), 1997.
- 28CCDC 188147 (11⋅PF6) and CCDC 188995 (12⋅PF6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or [email protected]). Structure factors are available from the authors via email:[email protected].