Electrochemical Cyclopropanation of Unactivated Alkenes with Methylene Compounds
Min Liu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorYanwei Wang
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorChao Gao
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorJingpei Jia
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorZile Zhu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Youai Qiu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorMin Liu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorYanwei Wang
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorChao Gao
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorJingpei Jia
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorZile Zhu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Youai Qiu
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071 China
Search for more papers by this authorAbstract
Cyclopropanes are prevalent in natural products, pharmaceuticals, and bioactive compounds, functioning as a significant structural motif. Although a series of methods have been developed for the construction of the cyclopropane skeleton, the development of a direct and efficient strategy for the rapid synthesis of cyclopropanes from bench-stable starting materials with a broad substrate scope and functional group tolerance remains challenging and highly desirable. Herein, we present an electrochemical method for the direct cyclopropanation of unactivated alkenes using active methylene compounds. The strategy shows a broad substrate scope with a high level of functional group compatibility, as well as potential application as demonstrated by late-stage cyclopropanation of complex molecules and drug derivatives. Further mechanistic investigations suggest that Cp2Fe (Fc) plays an essential role as an oxidative mediator in generating radicals from active methylene compounds.
Open Research
Data Availability Statement
Materials and methods, optimization studies, experimental procedures, mechanistic studies, 1H NMR, 13C NMR and 19F NMR spectra, and high-resolution mass spectrometry data are available in the Supporting Information. Deposition Number 2402258 (for 49) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202425634-sup-0001-misc_information.pdf19.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. N. C. Wong, M. Y. Hon, C. W. Tse, Y. C. Yip, J. Tanko, T. Hudlicky, Chem. Rev. 1989, 89, 165–198;
- 1bH. M. Davies, J. R. Denton, Chem. Soc. Rev. 2009, 38, 3061–3071.
- 2
- 2aD. Zhang, H. Song, Y. Qin, Acc. Chem. Res. 2011, 44, 447–457;
- 2bM. A. Cavitt, L. H. Phun, S. France, Chem. Soc. Rev. 2014, 43, 804–818;
- 2cL. A. Wessjohann, W. Brandt, T. Thiemann, Chem. Rev. 2003, 103, 1625–1648.
- 3
- 3aH. U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151–1196;
- 3bT. F. Schneider, J. Kaschel, D. B. Werz, Angew. Chem. Int. Ed. 2014, 53, 5504–5523.
- 4
- 4aA. B. Charette, A. Beauchemin. “Simmons–Smith cyclopropanation reaction” (Wiley, 2001), vol. 58 of Organic Reactions; https://doi.org/10.1002/0471264180.or058.01;
- 4bH. E. Simmons, R. D. Smith, J. Am. Chem. Soc. 1958, 80, 5323–5324.
- 5
- 5aY. A. Konik, D. G. Kananovich, Tetrahedron Lett. 2020, 61, 152036;
- 5bE. M. McGarrigle, E. L. Myers, O. Illa, M. A. Shaw, S. L. Riches, V. K. Aggarwal, Chem. Rev. 2007, 107, 5841–5883;
- 5cM. A. Shaikh, A. S. Ubale, B. Gnanaprakasam, J. Org. Chem. 2024, 89, 2283–2293.
- 6
- 6aX. Xu, Y. Wang, X. Cui, L. Wojtas, X. P. Zhang, Chem. Sci. 2017, 8, 4347–4351;
- 6bY. Chen, J. V. Ruppel, X. P. Zhang, J. Am. Chem. Soc. 2007, 129, 12074–12075;
- 6cX. Wang, J. Ke, Y. Zhu, A. Deb, Y. Xu, X. P. Zhang, J. Am. Chem. Soc. 2021, 143, 11121–11129;
- 6dS. Sakurai, T. Inagaki, T. Kodama, M. Yamanaka, M. Tobisu, J. Am. Chem. Soc. 2022, 144, 1099–1105;
- 6eB. T. Jones, R. J. Adams, J. F. Bower, J. Am. Chem. Soc. 2022, 144, 16749–16754;
- 6fX. Shi, D. J. Gorin, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 5802–5803;
- 6gC. A. Witham, P. Mauleón, N. D. Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838–5839;
- 6hB. J. Bloomer, I. A. Joyner, M. Garcia-Borràs, D. B. Hu, M. Garçon, A. Quest, J. Am. Chem. Soc. 2024, 146, 1819–1824;
- 6iB. J. Bloomer, S. N. Natoli, M. Garcia-Borràs, J. H. Pereira, D. B. Hu, P. D. Adams, K. N. Houk, D. S. Clark, J. F. Hartwig, Nat. Catal. 2023, 6, 39–51;
- 6jJ. Huang, Z. Liu, B. J. Bloomer, D. S. Clark, A. Mukhopadhyay, J. D. Keasling, J. F. Hartwig, Nat. Chem. 2021, 13, 1186–1191;
- 6kD. T. Ngo, J. J. A. Garwood, D. A. Nagib, J. Am. Chem. Soc. 2024, 10.1021/jacs.4c07388.
- 7
- 7aJ. P. Phelan, S. B. Lang, J. S. Compton, C. B. Kelly, R. Dykstra, O. Gutierrez, G. A. Molander, J. Am. Chem. Soc. 2018, 140, 8037–8047;
- 7bG. Benoit, A. B. Charette, J. Am. Chem. Soc. 2017, 139, 1364–1367;
- 7cK. Usami, Y. Nagasawa, E. Yamaguchi, N. Tada, A. Itoh, Org. Lett. 2016, 18, 8–11;
- 7dD. M. Fischer, H. Lindner, W. M. Amberg, E. M. Carreira, J. Am. Chem. Soc. 2023, 145, 774–780;
- 7eW. Carl-Johan, F. Peter, C. R. Stephenson, J. Am. Chem. Soc. 2012, 134, 8875–8884;
- 7fB. Xu, L. Troian-Gautier, R. Dykstra, R. T. Martin, O. Gutierrez, U. K. Tambar, J. Am. Chem. Soc. 2020, 142, 6206–6215;
- 7gD. P. Poudel, A. Pokhrel, R. K. Tak, M. Shankar, R. Giri, Science 2023, 381, 545–553;
- 7hB. T. Boyle, N. W. Dow, C. B. Kelly, M. C. Bryan, D. W. MacMillan, Nature 2024, 631, 789–795;
- 7iH. Q. Ni, T. M. Alturaifi, W. Rodphon, N. F. Scherschel, S. Yang, F. Wang, P. Liu, K. M. Engle, J. Am. Chem. Soc. 2024, 146, 24503–24514;
- 7jX. Y. Han, N. Zhang, Q. N. Li, Y. Zhang, S. Das, Chem. Sci. 2024, 15, 13576–13604.
- 8
- 8aM. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319;
- 8bP. Xiong, H.-C. Xu, Acc. Chem. Res. 2019, 52, 3339–3350;
- 8cC. W. Anson, S. S. Stahl, Chem. Rev. 2020, 120, 3749–3786;
- 8dL. F. T. Novaes, J.-J. Liu, Y.-F. Shen, L.-X. Lu, J. M. Meinhardt, S. Lin, Chem. Soc. Rev. 2021, 50, 7941–8002;
- 8eC. Zhu, N. W. J. Ang, T. H. Meyer, Y. Qiu, L. Ackermann, ACS Cent. Sci. 2021, 7, 415–431;
- 8fJ. C. Siu, N. Fu, S. Lin, Acc. Chem. Res. 2020, 53, 547–560;
- 8gY. Qiu, C. Zhu, M. Stangier, J. Struwe, L. Ackermann, CCS Chem. 2020, 2, 1529–1552;
- 8hC.-Y. Cai, H.-C. Xu, Nat. Commun. 2018, 9, 3551;
- 8iL.-X. Lu, J. C. Siu, Y. Lai, S. Lin, J. Am. Chem. Soc. 2020, 142, 21272–21278;
- 8jS.-Z. Li, S.-C. Wang, P.-J. Wang, Z.-L. Huan, T. Wan, A.-W. Lei, Nat. Commun. 2022, 13, 443;
- 8kC.-Y. Cai, Y.-T. Zheng, J.-F. Li, H.-C. Xu, J. Am. Chem. Soc. 2022, 144, 11980–11985;
- 8lK. Liang, Q. Zhang, C. Guo, Sci. Adv. 2022, 8, eadd7134;
- 8mN. Fu, G. S. Sauer, A. Saha, A. Loo, S. Lin, Science 2017, 357, 575–579;
- 8nP. Zhou, K. Niu, H. Song, Y. Liu, Q. Wang, Green Chem. 2022, 24, 5760–5763;
- 8oE. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533, 77–81;
- 8pY. Liang, S.-H. Shi, R. Jin, X. Qiu, J. Wei, H. Tan, X. Jiang, X. Shi, S. Song, N. Jiao, Nat. Catal. 2021, 4, 116–123;
- 8qK.-J. Jiao, Y.-K. Xing, Q.-L. Yang, H. Qiu, T.-S. Me, Acc. Chem. Res. 2020, 53, 300–310;
- 8rQ.-L. Yang, Y.-Q. Li, C. Ma, P. Fang, X.-J. Zhang, T.-S. Mei, J. Am. Chem. Soc. 2017, 139, 3293–3298;
- 8sN. Sauermann, T.-H. Meyer, C. Tian, L. Ackermann, J. Am. Chem. Soc. 2017, 139, 18452–18455;
- 8tG.-Q. Sun, P. Yu, W. Zhang, W. Zhang, Y. Wang, L.-L. Liao, Z. Zhang, L. Li, Z. Lu, D.-G. Yu, S. Lin, Nature 2023, 615, 67–72;
- 8uW. Zhang, L.-L. Liao, L. Li, Y. Liu, L.-F. Dai, G.-Q. Sun, C.-K. Ran, J.-H. Ye, Y. Lan, D.-G. Yu, Angew. Chem. Int. Ed. 2023, 62, e202301892;
- 8vD. S. Chung, S. H. Park, S. G. Lee, H. Kim, Chem. Sci. 2021, 12, 5892–5897;
- 8wS. H. Park, G. Bae, A. Choi, S. Shin, K. Shin, C. H. Choi, H. Kim, J. Am. Chem. Soc. 2023, 145, 15360–15369;
- 8xY.-M. Jiang, Y.-Y. Lin, L. Zhu, Y. Yu, Y. Li, Y. Lin, K.-Y. Ye, CCS Chem. 2024, 10.31635/ccschem.023.202303489;
- 8yS.-S. Xu, H. Qiu, P.-P. Xie, Z. H. Wang, X. Wang, C. Zheng, S.-L. You, T.-S. Mei, CCS Chem. 2024, 10.31635/ccschem.024.202403939;
- 8zP. Li, Y. Wang, H. Zhao, Y. Qiu, Acc. Chem. Res. 2025, 58, 113–129.
- 9
- 9aQ. Wang, X. Zhang, P. Wang, X. Gao, H. Zhang, A. Lei, Chin. J. Chem. 2021, 39, 143–148;
- 9bM. Chen, Z.-J. Wu, J. Song, H.-C. Xu, Angew. Chem. Int. Ed. 2022, 61, e202115954;
- 9cC. Huang, W. Ma, X. Zheng, M. Xu, X. Qi, Q. Lu, J. Am. Chem. Soc. 2022, 144, 1389–1395;
- 9dZ. Zhao, Y. Liu, S. Wang, S. Tang, D. Ma, Z. Zhu, C. Guo, Y. Qiu, Angew. Chem. Int. Ed. 2023, 62, e202214710;
- 9eM. J. Kim, D. J. Wang, K. Targos, U. A. Garcia, A. F. Harris, I. A. Guzei, Z. K. Wickens, Angew. Chem. Int. Ed. 2023, 135, e202303032;
- 9fX. Zhang, X. Cheng, Org. Lett. 2022, 24, 8645–8650;
- 9gL.-B. Li, X.-Y. Wang, N.-K. Fu, Angew. Chem. Int. Ed. 2024, 63, e202403475;
- 9hS.-L. Fang, K.-H. Zhong, S.-G. Zeng, X.-W. Hu, P.-H. Sun, Z.-X. Ruan, Chem. Commun. 2023, 59, 11425–11428;
- 9iH.-T. Tang, H.-Y. Zhou, Y.-M. Pan, J.-L. Zhang, F.-H. Cui, W.-H. Li, D. Wang, Angew. Chem. Int. Ed. 2024, 136, e202315032;
- 9jT. Wang, F. He, W. Jiang, J. Liu, Angew. Chem. Int. Ed. 2024, 63, e202316140;
- 9kS.-Z. Sun, Y.-M. Cai, D.-L. Zhang, J.-B. Wang, H.-Q. Yao, X.-Y. Rui, R. Martin, M. Shang, J. Am. Chem. Soc. 2022, 144, 1130–1137;
- 9lS. P. Blum, T. Karakaya, D. Schollmeyer, A. Klapars, S. R. Waldvogel, Angew. Chem. Int. Ed. 2021, 60, 5056–5062;
- 9mJ. Liu, A. Guðmundsson, J. E. Bäckvall, Angew. Chem. Int. Ed. 2021, 60, 15686–15704;
- 9nJ. Zhang, B. Das, O. Verho, J. E. Bäckvall, Angew. Chem. Int. Ed. 2022, 61, e202212131;
- 9oX.-Y. Wang, Y.-Z. Pan, J. Yang, W.-H. Li, T. Gan, Y.-M. Pan, H.-T. Tang, D. Wang, Angew. Chem. Int. Ed. 2024, 22, e202404295;
- 9pH.-T. Tang, H.-Y. Zhou, Y.-M. Pan, J.-L. Zhang, F.-H. Cui, W.-H. Li, D.-S. Wang, Angew. Chem. Int. Ed. 2024, 63, e202315032;
- 9qT. J. DeLano, S. E. Reisman, ACS Catal. 2019, 9, 6751–6754;
- 9rJ. L. Hofstra, A. H. Cherney, C. M. Ordner, S. E. Reisman, J. Am. Chem. Soc. 2018, 140, 139–142;
- 9sW. Yi, P. C. Xu, T. He, S. Shi, S. Huang, Nat. Commun. 2024, 15, 9645;
- 9tG. Kou, P. Li, G. Yang, Y. Qiu, CCS Chem. 2024. 10.31635/ccschem.024.202404697;
- 9uA. Shi, Y. Liu, R. Zhang, Z. Zhu, Y. Qiu, eScience 2024, 4, 100255.
- 10
- 10aL.-H. Jie, B. Guo, J. Song, H.-C. Xu, J. Am. Chem. Soc. 2022, 144, 2343–2350;
- 10bL.-H. Jie, H.-C. Xu, J. Electrochem. Soc. 2024, 10.13208/j.electrochem.2313001.
- 11
- 11aY.-W. Wang, Q. Wang, L. Wu, K.-P. Jia, M.-Y. Wang, Y. Qiu, Nat. Commun. 2024, 15, 2780;
- 11bM. Liu, T. Feng, Y.-W. Wang, G.-S. Kou, Q. Wang, Q.-Y. Wang, Y. Qiu, Nat. Commun. 2023, 14, 6467;
- 11cP.-F. Li, G.-S. Kou, T. Feng, M.-Y. Wang, Y. Qiu, Angew. Chem. Int. Ed. 2023, 62, e202311941;
- 11dK.-M. Yang, T. Feng, Y. Qiu, Angew. Chem. Int. Ed. 2023, 62, e202312803.
- 12Deposition Number 2402258 (for 49) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 13P. Chakravarty, W. Greenlee, W. Parsons, A. Patchett, P. Combs, A. Roth, R. Bush, T. J. Mellin, Med. Chem. 1989, 32, 1886.
- 14
- 14aD. D. M. Wayner, A. Houmam, C. Rømming, L. Skattebøl, L. Barre, O. Hammerich, I. Søtofte, B. Langstrom, Acta Chem. Scand. 1998, 52, 377–384;
- 14bL. Zhu, P. Xiong, Z.-Y. Mao, Y.-H. Wang, X. Yan, X. Lu, H.-C. Xu, Angew. Chem. Int. Ed. 2016, 55, 2226–2229;
- 14cN. Chen, Z.-J. Wu, H.-C. Xu, Isr. J. Chem. 2024, 64, e202300097;
- 14dZ.-J. Wu, H.-C. Xu, Angew. Chem. Int. Ed. 2017, 129, 4812–4816;
- 14eS. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem. 2014, 12, 1341–1350;
- 14fG. Lei, M. Xu, R. Chang, I. Funes-Ardoiz, J. Ye, J. Am. Chem. Soc. 2021, 143, 11251–11261;
- 14gJ. D. Nguyen, J. W. Tucker, M. D. Konieczynska, C. R. Stephenson, J. Am. Chem. Soc. 2011, 133, 4160–4163;
- 14hH. Singh, R. K. Tak, D. P. Poudel, R. Giri, ACS Catal. 2024, 14, 6001–6008;
- 14iZ. Guan, S. Zhu, Y. Ye, X. Li, Y. Liu, P. Wang, H. Zhang, Z. Huang, A. Lei, Angew. Chem. Int. Ed. 2022, 134, e202207059;
- 14jK. Ide, M. Furuta, H. Tokuyama, Org. Biomol. Chem. 2021, 19, 9172–9176.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.