Targeted Synthesis of Interpenetration-Free Mesoporous Aromatic Frameworks by Manipulating Catalysts as Templates
Zihao Wang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 Jilin, China.
Search for more papers by this authorLi Jiang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 Jilin, China.
Search for more papers by this authorCorresponding Author
Prof. Jiangtao Jia
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 Jilin, China.
Search for more papers by this authorCorresponding Author
Prof. Guangshan Zhu
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 Jilin, China.
Search for more papers by this authorZihao Wang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 Jilin, China.
Search for more papers by this authorLi Jiang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 Jilin, China.
Search for more papers by this authorCorresponding Author
Prof. Jiangtao Jia
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 Jilin, China.
Search for more papers by this authorCorresponding Author
Prof. Guangshan Zhu
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 Jilin, China.
Search for more papers by this authorAbstract
Reticular chemistry allows the design and synthesis of mesoporous networks by extending the size of the building blocks. However, interpenetration of the nets easily happens against the designed mesoporous networks, thereby falling short of achieving the intended specific surface area and pore size. Controlling the framework interpenetration has always been a challenge in the synthesis section of reticular chemistry. In this work, based on our previously reported type of highly porous aromatic frameworks (named PAF-1), we extended the tetrahedral building blocks to target an iso-reticular mesoporous PAF-333. A series of Ni(0) ligands with different sizes were employed to confirm that suitable-sized catalyst ligands could successfully inhibit skeleton interpenetration in the coupling reaction through the steric hindrance effect. The obtained mesoporous PAF-333 possessed a pore size of approximately 3.2 nm matching well with the value from the predicted non-interpenetrated structure. PAF-333 showed great high-pressure hydrogen and methane storage potential with a 13.4 wt % H2 uptake at 77 K, 100 bar and a 0.537 g g−1 CH4 uptake at 298 K, 98 bar, ranking at the top of the reported porous adsorbents in the gas storage applications.
Conflict of Interests
The authors declare no competing interests.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420746-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Li, J. Liu, D. Zhao, Nat. Rev. Mater. 2016, 1, 16023.
- 2E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Science 2019, 366, 6468.
- 3Y. Zou, B. Huang, L. Cao, Y. Deng, J. Su, Adv. Mater. 2021, 33, e2005215.
- 4J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 2020, 49, 3565–3604.
- 5T. Liu, J. Liu, L. Li, L. Yu, J. Diao, T. Zhou, S. Li, A. Dai, W. Zhao, S. Xu, Y. Ren, L. Wang, T. Wu, R. Qi, Y. Xiao, J. Zheng, W. Cha, R. Harder, I. Robinson, J. Wen, J. Lu, F. Pan, K. Amine, Nature 2022, 606, 305–312.
- 6H. Ghaedi, M. Zhao, Energy Fuels 2022, 36, 2424–2446.
- 7L. Duan, C. Wang, W. Zhang, B. Ma, Y. Deng, W. Li, D. Zhao, Chem. Rev. 2021, 121, 14349–14429.
- 8Y. Li, J. Su, Y. Zhao, L. Feng, L. Gao, X. Xu, Y. Yin, Y. Liu, P. Xiao, L. Yuan, J.-S. Qin, Y. Wang, S. Yuan, H. Zheng, J.-L. Zuo, J. Am. Chem. Soc. 2023, 145, 10227–10235.
- 9Y. Liang, X. Yang, X. Wang, Z.-J. Guan, H. Xing, Y. Fang, Nat. Commun. 2023, 14, 5223.
- 10H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O′Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018–1023.
- 11Q. Liu, Y. Song, Y. Ma, Y. Zhou, H. Cong, C. Wang, J. Wu, G. Hu, M. O′Keeffe, H. Deng, J. Am. Chem. Soc. 2019, 141, 488–496.
- 12Y. X. Ma, Z. J. Li, L. Wei, S. Y. Ding, Y. B. Zhang, W. Wang, J. Am. Chem. Soc. 2017, 139, 4995–4998.
- 13A. P. Côté, A. I. Benin, N. W. Ockwig, M. O′Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
- 14Z. Mu, Y. Zhu, B. Li, A. Dong, B. Wang, X. Feng, J. Am. Chem. Soc. 2022, 144, 5145–5154.
- 15Y. Luo, B. Li, W. Wang, K. Wu, B. Tan, Adv. Mater. 2012, 24, 5703–5707.
- 16J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, A. I. Cooper, Angew. Chem. Int. Ed. 2007, 46, 8574–8578.
- 17Y. Tian, G. Zhu, Chem. Rev. 2020, 120, 8934–8986.
- 18T. Ben, Y. Li, L. Zhu, D. Zhang, D. Cao, Z. Xiang, X. Yao, S. Qiu, Energy Environ. Sci. 2012, 5, 8370–8376.
- 19Z. Wang, Y. Zhang, L. Jiang, Q. Han, Q. Wang, J. Jia, G. Zhu, Chem. Synth. 2024, 4, 40.
- 20C. S. Diercks, O. M. Yaghi, Science 2017, 355, eaal1585.
- 21F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klock, M. O′Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 4570–4571.
- 22Y. Wang, Y. Liu, H. Li, X. Guan, M. Xue, Y. Yan, V. Valtchev, S. Qiu, Q. Fang, J. Am. Chem. Soc. 2020, 142, 3736–3741.
- 23A. A. Uliana, N. T. Bui, J. Kamcev, M. K. Taylor, J. J. Urban, J. R. Long, Science 2021, 372, 296–299.
- 24T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu, G. Zhu, Angew. Chem. Int. Ed. 2009, 48, 9457–9460.
- 25T. Yamamoto, S. Wakabayashi, K. Osakada, J. Organomet. Chem. 1992, 428, 223–237.
- 26D. Yuan, W. Lu, D. Zhao, H. C. Zhou, Adv. Mater. 2011, 23, 3723–3725.
- 27J. Jia, Z. Chen, H. Jiang, Y. Belmabkhout, G. Mouchaham, H. Aggarwal, K. Adil, E. Abou-Hamad, J. Czaban-Jóźwiak, M. R. Tchalala, M. Eddaoudi, Chem 2019, 5, 180–191.
- 28P. A. Monson, Microporous Mesoporous Mater. 2012, 160, 47–66.
- 29C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710–712.
- 30O. Purikova, I. Tkachenko, B. Šmíd, K. Veltruská, T. N. Dinhová, M. Vorokhta, V. Kopecký, L. Hanyková, X. Ju, Adv. Funct. Mater. 2022, 32, 2208316.
- 31G. Kupgan, T. P. Liyana-Arachchi, C. M. Colina, Langmuir 2017, 33, 11138–11145.
- 32S. Fu, Q. Fang, A. Li, Z. Li, J. Han, X. Dang, W. Han, Energy. Sci. Eng. 2020, 9, 80–100.
- 33S. Jeyavijayan, Spectrochim. Acta Part A 2015, 136 Pt B, 890–899.
- 34N. K. Kınaytürk, T. Kalaycı, B. Tunalı, D. T. Altuğ, Chem. Phys. 2023, 570, 11905.
- 35C. I. Schilling, O. Plietzsch, M. Nieger, T. Muller, S. Bräse, Eur. J. Org. Chem. 2011, 2011, 1743–1754.
- 36J. Elguero, R. M. Claramunt, R. Garcerán, S. Julià, L. Avila, J. M. del Mazo, Magn. Reson. Chem. 2005, 25, 260–268.
- 37C. Bonhomme, C. Coelho, N. Baccile, C. Gervais, T. Azais, F. Babonneau, Acc. Chem. Res. 2007, 40, 738–746.
- 38C. Felli, R. Pierattelli, Chem. Rev. 2022, 122, 9468–9496.
- 39N. M. Padial, C. Chinchilla-Garzon, N. Almora-Barrios, J. Castells-Gil, J. Gonzalez-Platas, S. Tatay, C. Marti-Gastaldo, J. Am. Chem. Soc. 2023, 145, 21397–21407.
- 40T. He, Z. Huang, S. Yuan, X. L. Lv, X. J. Kong, X. Zou, H. C. Zhou, J. R. Li, J. Am. Chem. Soc. 2020, 142, 13491–13499.
- 41D. Perl, S. J. Lee, A. Ferguson, G. B. Jameson, S. G. Telfer, Nat. Chem. 2023, 15, 1358–1364.
- 42H. Woo, A. M. Devlin, A. J. Matzger, J. Am. Chem. Soc. 2023, 145, 18634–18641.
- 43D. Y. Curtin, Rec. Chem. Prog. 1954, 15, 111–128.
- 44L. P. Hammett, Physical Organic Chemistry: reaction rates, equilibria, and mechanisms, 2nd ed, McGraw-Hill: New York, 1970.
- 45T. Ma, J. Li, J. Niu, L. Zhang, A. S. Etman, C. Lin, D. Shi, P. Chen, L.-H. Li, X. Du, J. Sun, W. Wang, J. Am. Chem. Soc. 2018, 140, 6763–6766.
- 46Y. Chen, P. Li, J. A. Modica, R. J. Drout, O. K. Farha, J. Am. Chem. Soc. 2018, 140, 5678–5681.
- 47W. Wang, Y. Jiang, Z. Huang, H. V. T. Nguyen, B. Liu, M. Hartweg, M. Shirakura, K. P. Qin, J. A. Johnson, J. Am. Chem. Soc. 2022, 144, 23332–23339.
- 48D. W. Kim, Y. Chen, H. Kim, N. Kim, Y. H. Lee, H. Oh, Y. G. Chung, C. S. Hong, Adv. Mater. 2024, 36, e2401739.
- 49N. Bimbo, J. E. Sharpe, V. P. Ting, A. Noguera-Díaz, T. J. Mays, Adsorption 2013, 20, 373–384.
- 50Z. Chen, P. Li, R. Anderson, X. Wang, X. Zhang, L. Robison, L. R. Redfern, S. Moribe, T. Islamoglu, D. A. Gomez-Gualdron, T. Yildirim, J. F. Stoddart, O. K. Farha, Science 2020, 368, 297–303.
- 51S. Yang, Z. Zhong, J. Hu, X. Wang, B. Tan, Adv. Mater. 2024, 36, 2307579.
- 52L. Shi, Y. Zhong, H. Cao, H. Wang, Z. Xiong, K. Wang, H. Shen, Z. Chen, Nat. Synth. 2024, https://doi.org/10.1038/s44160-024-00622-5.
- 53T. A. Makal, J.-R. Li, W. Lu, H.-C. Zhou, Chem. Soc. Rev. 2012, 41, 7761–7779.
- 54V. Rozyyev, D. Thirion, R. Ullah, J. Lee, M. Jung, H. Oh, M. Atilhan, C. T. Yavuz, Nat. Energy 2019, 4, 604–611.
- 55D. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, Ł. J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P. N. Trikalitis, A.-H. Emwas, M. Eddaoudi, J. Am. Chem. Soc. 2015, 137, 13308–13318.
- 56Y. Yin, Y. Zhang, X. Zhou, B. Gui, W. Wang, W. Jiang, Y. B. Zhang, J. Sun, C. Wang, Science 2024, 386, 693–696.
- 57Z. Chen, M. R. Mian, S.-J. Lee, H. Chen, X. Zhang, K. O. Kirlikovali, S. Shulda, P. Melix, A. S. Rosen, P. A. Parilla, T. Gennett, R. Q. Snurr, T. Islamoglu, T. Yildirim, O. K. Farha, J. Am. Chem. Soc. 2021, 143, 18838–18843.
- 58W. He, G. Yang, Y. Tang, S. Li, S. Zhang, Z. Su, Y. Lan, Chem. Eur. J. 2015, 21, 9784–9789.
- 59L. Xie, X. Liu, T. He, J. Li, Chem 2018, 4, 1911–1927.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.