Acid-Enhanced Photoiniferter Polymerization under Visible Light
Maria-Nefeli Antonopoulou
Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Nghia P. Truong
Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
Search for more papers by this authorTimon Egger
Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Asja A. Kroeger
Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Michelle L. Coote
Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Athina Anastasaki
Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
Search for more papers by this authorMaria-Nefeli Antonopoulou
Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Nghia P. Truong
Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
Search for more papers by this authorTimon Egger
Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Asja A. Kroeger
Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Michelle L. Coote
Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Athina Anastasaki
Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
Search for more papers by this authorAbstract
Photoiniferter (PI) is a promising polymerization methodology, often used to overcome restrictions posed by thermal reversible addition-fragmentation chain-transfer (RAFT) polymerization. However, in the overwhelming majority of reports, high energy UV irradiation is required to effectively trigger photolysis of RAFT agents and facilitate the polymerization, significantly limiting its potential, scope, and applicability. Although visible light PI has emerged as a highly attractive alternative, most current approaches are limited to the synthesis of lower molecular weight polymers (i.e. 10,000 g/mol), and typically suffer from prolonged reaction times, extended induction periods, and higher dispersities when high activity CTAs (photoiniferters), such as trithiocarbonates, are employed. Herein, an acid-enhanced PI polymerization is introduced that efficiently operates under visible light irradiation. The presence of small amounts of biocompatible citric acid fully eliminates the lengthy induction period (21 hours) by enhancing photolysis, rapidly consuming the CTA, and accelerating the reaction rate, yielding polymers with narrow molar mass distributions (Ð ~1.1), near-quantitative conversions (>97 %), and high end-group fidelity in just two hours. A particularly noteworthy aspect of this work is the possibility to target very high degrees of polymerization (i.e. DP=3,000) within short timescales (i.e. less than five hours) without compromising the control over the dispersity (Ð ~1.1). The versatility of the technique is further demonstrated through the synthesis of well-defined diblock copolymers and its compatibility to various polymer classes (i.e. acrylamides, acrylates, methacrylates), thus establishing visible-light PI as a robust tool for polymer synthesis.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420733-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. Corrigan, K. Jung, G. Moad, C. J. Hawker, K. Matyjaszewski, C. Boyer, Prog. Polym. Sci. 2020, 111, 101311;
- 1bK. Matyjaszewski, Adv. Mater. 2018, 30, 1706441;
- 1cK. Matyjaszewski, J. Spanswick, in Handbook of Polymer Synthesis, CRC Press, 2004, pp. 907–954;
- 1dK. Parkatzidis, H. S. Wang, N. P. Truong, A. Anastasaki, Chem 2020, 6, 1575–1588;
- 1eK. Liu, N. Corrigan, A. Postma, G. Moad, C. Boyer, Macromolecules 2020, 53, 8867–8882;
- 1fS. Domanskyi, D. T. Gentekos, V. Privman, B. P. Fors, Polym. Chem. 2020, 11, 326–336;
- 1gG. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2012, 65, 985–1076.
- 2
- 2aD. J. Keddie, Chem. Soc. Rev. 2014, 43, 496–505;
- 2bG. Moad, E. Rizzardo, S. H. Thang, Chem. Asian J. 2013, 8, 1634–1644;
- 2cN. P. Truong, G. R. Jones, K. G. E. Bradford, D. Konkolewicz, A. Anastasaki, Nat. Chem. Rev. 2021, 5, 859–869;
- 2dS. Perrier, Macromolecules 2017, 50, 7433–7447;
- 2eC. Barner-Kowollik, Handbook of RAFT polymerization, John Wiley & Sons, 2008.
10.1002/9783527622757 Google Scholar
- 3
- 3aA. H. Soeriyadi, C. Boyer, F. Nyström, P. B. Zetterlund, M. R. Whittaker, J. Am. Chem. Soc. 2011, 133, 11128–11131;
- 3bY.-M. Chuang, A. Ethirajan, T. Junkers, ACS Macro Lett. 2014, 3, 732–737;
- 3cA. Anastasaki, B. Oschmann, J. Willenbacher, A. Melker, M. H. C. Van Son, N. P. Truong, M. W. Schulze, E. H. Discekici, A. J. McGrath, T. P. Davis, C. M. Bates, C. J. Hawker, Angew. Chem. Int. Ed. 2017, 56, 14483–14487;
- 3dS. M. Barbon, N. P. Truong, A. G. Elliott, M. A. Cooper, T. P. Davis, M. R. Whittaker, C. J. Hawker, A. Anastasaki, Polym. Chem. 2020, 11, 84–90;
- 3eG. K. Clothier, T. R. Guimarães, M. Khan, G. Moad, S. Perrier, P. B. Zetterlund, ACS Macro Lett. 2019, 8, 989–995;
- 3fG. K. K. Clothier, T. R. Guimarães, G. Moad, P. B. Zetterlund, Macromolecules 2021, 54, 3647–3658;
- 3gG. K. K. Clothier, T. R. Guimarães, S. W. Thompson, J. Y. Rho, S. Perrier, G. Moad, P. B. Zetterlund, Chem. Soc. Rev. 2023, 52, 3438–3469;
- 3hG. Gody, T. Maschmeyer, P. B. Zetterlund, S. Perrier, Macromolecules 2014, 47, 3451–3460;
- 3iG. Gody, T. Maschmeyer, P. B. Zetterlund, S. Perrier, Nat. Commun. 2013, 4;
- 3jA.-C. Lehnen, J. A. Kurki, M. Hartlieb, Polym. Chem. 2022, 13, 1537–1546;
- 3kG. R. Jones, R. Whitfield, A. Anastasaki, N. Risangud, A. Simula, D. J. Keddie, D. M. Haddleton, Polym. Chem. 2018, 9, 2382–2388.
- 4G. Gody, R. Barbey, M. Danial, S. Perrier, Polym. Chem. 2015, 6, 1502–1511.
- 5
- 5aJ. Xu, K. Jung, A. Atme, S. Shanmugam, C. Boyer, J. Am. Chem. Soc. 2014, 136, 5508–5519;
- 5bM. L. Allegrezza, D. Konkolewicz, ACS Macro Lett. 2021, 10, 433–446;
- 5cH. Foster, M. H. Stenzel, R. Chapman, Macromolecules 2022, 55, 5938–5945;
- 5dP. R. Judzewitsch, T.-K. Nguyen, S. Shanmugam, E. H. H. Wong, C. Boyer, Angew. Chem. Int. Ed. 2018, 57, 4559–4564;
- 5eG. Ng, J. Yeow, R. Chapman, N. Isahak, E. Wolvetang, J. J. Cooper-White, C. Boyer, Macromolecules 2018, 51, 7600–7607;
- 5fJ. Phommalysack-Lovan, Y. Chu, C. Boyer, J. Xu, Chem. Commun. 2018, 54, 6591–6606.
- 6
- 6aR. W. Hughes, M. E. Lott, R. A. Olson S, B. S. Sumerlin, Prog. Polym. Sci. 2024, 156, 101871;
- 6bT. Otsu, M. Yoshida, T. Tazaki, Makromol. Chem. Rapid Commun. 1982, 3, 133–140;
- 6cT. Otsu, J. Polym. Sci. A: Polym. Chem. 2000, 38, 2121–2136;
10.1002/(SICI)1099-0518(20000615)38:12<2121::AID-POLA10>3.0.CO;2-X CAS Web of Science® Google Scholar
- 6dR. N. Carmean, T. E. Becker, M. B. Sims, B. S. Sumerlin, Chem 2017, 2, 93–101.
- 7C. A. Figg, J. D. Hickman, G. M. Scheutz, S. Shanmugam, R. N. Carmean, B. S. Tucker, C. Boyer, B. S. Sumerlin, Macromolecules 2018, 51, 1370–1376.
- 8Y.-T. Chou, W.-R. Lee, S.-S. Yu, Macromolecules 2024, 57, 9241–9249.
- 9
- 9aA. Gridnev, E. Nechvolodova, Theor. Exp. Chem. 1989, 25, 670–675;
10.1007/BF00534451 Google Scholar
- 9bM. Obata, E. Ohtake, S. Hirohara, M. Tanihara, S. Yano, J. Polym. Sci. A: Polym. Chem. 2012, 50, 3592–3597.
- 10
- 10aK. Matyjaszewski, Macromolecules 2012, 45, 4015–4039;
- 10bJ.-S. Wang, K. Matyjaszewski, Macromolecules 1995, 28, 7901–7910.
- 11
- 11aC. J. Hawker, G. G. Barclay, A. Orellana, J. Dao, W. Devonport, Macromolecules 1996, 29, 5245–5254;
- 11bC. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev. 2001, 101, 3661–3688;
- 11cG. Moad, E. Rizzardo, in Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science (Ed.: D. Gigmes), The Royal Society of Chemistry, 2015.
- 12
- 12aR. N. Carmean, M. B. Sims, C. A. Figg, P. J. Hurst, J. P. Patterson, B. S. Sumerlin, ACS Macro Lett. 2020, 9, 613–618;
- 12bL. Trachsel, K. A. Stewart, D. Konar, J. D. Hillman, J. A. Moerschel, B. S. Sumerlin, J. Am. Chem. Soc. 2024, 146, 16257–16267.
- 13C. P. Easterling, Y. Xia, J. Zhao, G. E. Fanucci, B. S. Sumerlin, ACS Macro Lett. 2019, 8, 1461–1466.
- 14R. W. Lewis, R. A. Evans, N. Malic, K. Saito, N. R. Cameron, Polym. Chem. 2018, 9, 60–68.
- 15A.-C. Lehnen, J. Gurke, A. M. Bapolisi, M. Reifarth, M. Bekir, M. Hartlieb, Chem. Sci. 2023, 14, 593–603.
- 16Q. Ma, G. G. Qiao, Z. An, Angew. Chem. Int. Ed. 2023, 62, e202314729.
- 17S. Lian, S. P. Armes, Z. An, CCS Chem. 2024, 0, 1–24.
- 18T. G. McKenzie, Q. Fu, E. H. H. Wong, D. E. Dunstan, G. G. Qiao, Macromolecules 2015, 48, 3864–3872.
- 19M.-N. Antonopoulou, G. R. Jones, A. A. Kroeger, Z. Pei, M. L. Coote, N. P. Truong, A. Anastasaki, Nat. Synth. 2024, 3, 347–356.
- 20
- 20aM. T. Blyth, B. B. Noble, I. C. Russell, M. L. Coote, J. Am. Chem. Soc. 2020, 142, 606–613;
- 20bS. J. P. Marlton, B. I. McKinnon, N. S. Hill, M. L. Coote, A. J. Trevitt, J. Am. Chem. Soc. 2021, 143, 2331–2339;
- 20cN. S. Hill, M. L. Coote, J. Am. Chem. Soc. 2018, 140, 17800–17804.
- 21
- 21aD. Konkolewicz, K. Schröder, J. Buback, S. Bernhard, K. Matyjaszewski, ACS Macro Lett. 2012, 1, 1219–1223;
- 21bF. A. Leibfarth, K. M. Mattson, B. P. Fors, H. A. Collins, C. J. Hawker, Angew. Chem. Int. Ed. 2013, 52, 199–210;
- 21cS. Dadashi-Silab, I.-H. Lee, A. Anastasaki, F. Lorandi, B. Narupai, N. D. Dolinski, M. L. Allegrezza, M. Fantin, D. Konkolewicz, C. J. Hawker, K. Matyjaszewski, Macromolecules 2020, 53, 5280–5288;
- 21dN. D. Dolinski, Z. A. Page, E. H. Discekici, D. Meis, I. H. Lee, G. R. Jones, R. Whitfield, X. Pan, B. G. McCarthy, S. Shanmugam, J. Polym. Sci. A: Polym. Chem. 2019, 57, 268–273;
- 21eY. Ma, V. Kottisch, E. A. McLoughlin, Z. W. Rouse, M. J. Supej, S. P. Baker, B. P. Fors, J. Am. Chem. Soc. 2021, 143, 21200–21205;
- 21fD.-F. Chen, B. M. Boyle, B. G. McCarthy, C.-H. Lim, G. M. Miyake, J. Am. Chem. Soc. 2019, 141, 13268–13277;
- 21gS. L. Walden, J. A. Carroll, A.-N. Unterreiner, C. Barner-Kowollik, Adv. Sci. 2024, 11, 2306014;
- 21hV. Kottisch, M. Supej, B. Fors, Angew. Chem. Int. Ed. 2018, 57, 8260–8264.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.