Regulating Crystalline Phase/Plane of Polymer Electrolyte for Rapid Lithium Ion Transfer
Su Wang
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorChen Li
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Yue Ma
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Hongzhou Zhang
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Xixi Shi
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Lianqi Zhang
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Dawei Song
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorSu Wang
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorChen Li
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Yue Ma
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Hongzhou Zhang
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Xixi Shi
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Lianqi Zhang
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Dawei Song
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorAbstract
Electronic-rich functional groups and flexible segments have long been perceived to be the decisive factors influencing lithium-ion transfer in polymer electrolytes, while crystallinity is regarded as the great scourge. Actually, the research on the influence of crystalline phase and crystalline plane is still in scarcity. Herein, taking poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) as an example, new (111/201) crystal planes (belonged to β-phase) are regulated by dissolving process and clarified by Synchrotron radiation X-ray diffraction and X-ray diffraction. Density functional theory calculation indicates that the newly exposed (111/201) crystal planes provide higher binding energy with lithium ions and are conducive to provide more ion transport channels. 7Li nuclear magnetic resonance of new crystalline planes contained PVDF-HFP based electrolyte shows lower field and sharper peak intensity, further proves the rapid lithium ion transfer. Therefore, a high ionic conductivity of 6.42×10−4 S cm−1 and a large lithium-ion transfer number of 0.7 are achieved. This study offers a new insight into the influence of crystalline phase and crystalline plane on the transfer of lithium ion for polymer electrolytes.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420698-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. L. Li, H. W. An, Y. J. Song, Q. S. Liu, J. Wang, H. Huo, S. F. Lou, J. J. Wang, J. Am. Chem. Soc. 2023, 145, 25632–25642.
- 2M. J. Lee, J. Han, K. Lee, Y. J. Lee, B. G. Kim, K. N. Jung, B. J. Kim, S. W. Lee, Nature 2022, 601, 217–222.
- 3S. D. Huo, L. Sheng, W. D. Xue, L. Wang, H. Xu, H. Zhang, X. M. He, InfoMat 2023, 5, e12394.
- 4J. Lopez, D. G. Mackanic, Y. Cui, Z. N. Bao, Nat. Rev. Mater. 2019, 4, 312–330.
- 5X. Zhang, T. Liu, S. F. Zhang, X. Huang, B. Q. Xu, Y. H. Lin, B. Xu, L. L. Li, C. W. Nan, Y. Shen, J. Am. Chem. 2017, 139, 13779–13785.
- 6D. N. Lei, Y. B. He, H. J. Huang, Y. F. Yuan, G. M. Zhong, Q. Zhao, X. G. Hao, D. F. Zhang, C. Lai, S. W. Zhang, J. B. Ma, Y. P. Wei, Q. P. Yu, W. Lv, Y. Yu, B. H. Li, Q. H. Yang, Y. Yang, J. Lu, F. Y. Kang, Nat. Commun. 2019, 10, 4244.
- 7J. Castillo, A. Santiago, X. Judez, I. Garbayo, J. A. C. Clemente, M. C. Morant-Miñana, A. Villaverde, J. A. González-Marcos, H. Zhang, M. Armand, C. M. Li, Chem. Mater. 2021, 33, 8812–8821.
- 8H. Yang, B. Zhang, M. X. Jing, X. Q. Shen, L. Wang, H. Xu, X. H. Yan, X. M. He, Adv. Energy Mater. 2022, 12, 2201762.
- 9Q. Liu, L. Wang, X. M. He, Adv. Energy Mater. 2023, 13, 2300798.
- 10G. R. Zhu, Q. Zhang, Q. S. Liu, Q. Y. Bai, Y. Z. Quan, Y. Gao, G. Wu, Y. Z. Wang, Nat. Commun. 2023, 14, 4617.
- 11L. Chen, L. Q. Cheng, J. Yu, J. Chu, H. G. Wang, F. C. Cui, G. S. Zhu, Adv. Funct. Mater. 2022, 32, 2209848.
- 12H. P. Wu, Y. Cao, H. P. Su, C. Wang, Angew. Chem. Int. Ed. 2018, 57, 1361–1365.
- 13Q. F. Sun, S. Wang, Y. Ma, D. W. Song, H. Z. Zhang, X. X. Shi, N. Zhang, L. Q. Zhang, Adv. Mater. 2023, 35, 2300998.
- 14V. K. Thakur, G. Q. Ding, J. Ma, P. S. Lee, X. H. Lu, Adv. Mater. 2012, 24, 4071–4096.
- 15D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. X. Wang, Chem 2019, 5, 2326–2352.
- 16Z. Li, J. L. Fu, X. Y. Zhou, S. W. Gui, L. Wei, H. Yang, H. Li, X. Guo, Adv. Sci. 2023, 10, 2201718.
- 17X. He, Y. X. Ni, Y. P. Hou, Y. Lu, S. Jin, H. X. Li, Z. H. Yan, K. Zhang, J. Chen, Angew. Chem. Int. Ed. 2021, 133, 22854–22859.
- 18Y. Zhao, L. Wang, Y. A. Zhou, Z. Liang, N. Tavajohi, B. H. Li, T. Li, Adv. Sci. 2021, 8, 2003675.
- 19Q. Zhang, Z. W. Liu, X. S. Song, T. F. Bian, Z. J. Guo, D. H. Wu, J. Wei, S. X. Wu, Y. Zhao, Angew. Chem. Int. Ed. 2023, 62, e202302559.
- 20J. F. Liu, Z. Y. Wu, F. J. Stadler, Y. F. Huang, Angew. Chem. Int. Ed. 2023, 62, e202300243.
- 21Q. Y. Liu, G. J. Yang, X. Y. Li, S. M. Zhang, R. J. Chen, X. F. Wang, Y. R. Gao, Z. X. Wang, L. Q. Chen, Energy Storage Mater. 2022, 51, 443–452.
- 22C. M. Costa, V. F. Cardoso, P. Martins, D. M. Correia, R. Gonçalves, P. Costa, V. Correia, C. Ribeiro, M. M. Fernandes, P. M. Martins, S. Lanceros-Méndez, Chem. Rev. 2023, 123, 11392–11487.
- 23K. Chen, E. J. Saltzman, K. S. Schweizer, Annu. Rev. Conden. Ma. P. 2010, 1, 277–300.
- 24Y. Hotta, R. Hiraoka, T. Yamaoka, High Perform. Polym. 1997, 9, 369–383.
- 25A. Nasr, P. Svoboda, Polymer 2023, 15, 1952.
- 26K. Tashiro, A. Yoshioka, Macromolecules 2002, 35, 410–414.
- 27W. R. Moore, R. P. Sheldon, Polymer 1961, 2, 315–321.
- 28L. M. Song, S. H. Sun, S. J. Zhang, J. F. Wei, Fuel 2022, 324, 124572.
- 29R. Guo, H. Luo, X. F. Zhou, Z. D. Xiao, H. R. Xie, Y. Liu, K. C. Zhou, Z. H. Shen, L. Q. Chen, D. Zhang, J. Mater. Chem. A 2021, 9, 27660–27671.
- 30P. Xu, H. Y. Chen, X. Zhou, H. F. Xiang, J. Membr. Sci. 2021, 617, 118660.
- 31Y. F. Huang, J. P. Zeng, S. F. Li, C. Dai, J. F. Liu, C. Liu, Y. B. He, Adv. Energy Mater. 2023, 13, 2203888.
- 32R. Sahoo, S. Mishra, A. Ramadoss, S. Mohanty, S. Mahapatra, S. K. Nayak, Mater. Res. Bull. 2020, 132, 111005.
- 33C. Gao, X. P. Li, G. J. Wei, S. J. Wang, X. X. Zhao, F. G. Kong, Ind. Crops Prod. 2023, 195, 116426.
- 34S. S. Lv, X. W. He, Z. F. Ji, S. F. Yang, L. X. Feng, X. W. Fu, W. Yang, Y. Wang, Adv. Energy Mater. 2023, 13, 2302711.
- 35J. X. Zhu, S. He, H. Y. Tian, Y. M. Hu, C. Xin, X. X. Xie, L. P. Zhang, J. Gao, S. M. Hao, W. D. Zhou, L. Q. Zhang, Adv. Funct. Mater. 2023, 33, 2301165.
- 36W. N. Wu, H. F. Yu, M. H. Yeh, K. C. Ho, Sol. Energy Mater. Sol. Cells 2020, 208, 110375.
- 37X. M. Cai, T. P. Lei, D. H. Sun, L. W. Lin, RSC Adv. 2017, 7, 15382–15389.
- 38D. C. Zhang, Y. X. Liu, Z. Y. Sun, Z. B. Liu, X. J. Xu, L. Xi, S. M. Ji, M. Zhu, J. Liu, Angew. Chem. Int. Ed. 2023, 62, e202310006.
- 39S. H. Zhang, F. Sun, X. F. Du, X. H. Zhang, L. Huang, J. Ma, S. M. Dong, A. Hilger, I. Manke, L. S. Li, B. Xie, J. D. Li, Z. W. Hu, A. C. Komarek, H. J. Lin, C. Y. Kuo, C. T. Chen, P. X. Han, G. J. Xu, Z. L. Cui, G. L. Cui, Energy Environ. Sci. 2023, 16, 2591–2602.
- 40Q. Kang, Y. Li, Z. C. Zhuang, D. S. Wang, C. Y. Zhi, P. K. Jiang, X. Y. Huang, J. Energy Chem. 2022, 69, 194–204.
- 41Y. F. Huang, T. Gu, G. C. Rui, P. R. Shi, W. B. Fu, L. Chen, X. T. Liu, J. P. Zeng, B. H. Kang, Z. C. Yan, F. J. Stadler, L. Zhu, F. Y. Kang, Y. B. He, Energy Environ. Sci. 2021, 14, 6021–6029.
- 42P. R. Shi, J. B. Ma, M. Liu, S. K. Guo, Y. F. Huang, S. W. Wang, L. H. Zhang, L. K. Chen, K. Yang, X. T. Liu, Y. H. Li, X. F. An, D. F. Zhang, X. Cheng, Q. D. Li, W. Lv, G. M. Zhong, Y. B. He, F. Y. Kang, Nat. Nanotechnol. 2023, 18, 602–610.
- 43Q. Wu, M. D. Fang, S. Z. Jiao, S. Y. Li, S. C. Zhang, Z. Y. Shen, S. L. Mao, J. L. Mao, J. H. Zhang, Y. Z. Tan, K. Shen, J. X. Lv, W. Hu, Y. He, Y. Y. Lu, Nat. Commun. 2023, 14, 6296.
- 44F. L. Xu, S. G. Deng, Q. Y. Guo, D. Zhou, X. Y. Yao, Small Methods 2021, 5, 2100262.
- 45S. Wang, Q. F. Sun, Y. Ma, Z. Y. Wang, H. Z. Zhang, X. X. Shi, D. W. Song, L. Q. Zhang, L. Y. Zhu, Small Methods 2022, 6, 2200258.
- 46P. Martins, A. C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 2014, 39, 683–706.
- 47K. Yan, J. Y. Wang, S. Q. Zhao, D. Zhou, B. Sun, Y. Cui, G. X. Wang, Angew. Chem. Int. Ed. 2019, 131, 11486–11490.
- 48Å. Lauenstein, J. Tegenfeldt, J. Phys. Chem. B 1998, 102, 6702.
- 49N. Wu, P. H. Chien, Y. Li, A. Dolocan, H. Xu, B. Xu, N. S. Grundish, H. Jin, Y. Y. Hu, J. B. Goodenough, J. Am. Chem. Soc. 2020, 142, 2497–2505.
- 50Y. Ma, Q. F. Sun, S. Wang, Y. Zhou, D. W. Song, H. Z. Zhang, X. X. Shi, L. Q. Zhang, Chem. Eng. J. 2022, 429, 132483.
- 51X. F. Yang, M. Jiang, X. J. Gao, D. Bao, Q. Sun, N. Holmes, H. Duan, S. Mukherjee, K. Adair, C. T. Zhao, J. W. Liang, W. H. Li, J. J. Li, Y. Liu, H. Huang, L. Zhang, S. G. Lu, Q. W. Lu, R. Y. Li, C. V. Singh, X. L. Sun, Energy Environ. Sci. 2020, 13, 1318–1325.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.