Enantiomorphic Site-Assisted Chain End Control Stereospecific Alternating Copolymerization of Chiral Cyclic Diesters
Dr. Ji Xian
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorHao Chen
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorGe Yao
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorFei Chen
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorZhichun Chen
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Dr. Hongzhang Cao
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030 China
Search for more papers by this authorLuya Cao
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030 China
Search for more papers by this authorProf. Dr. Xiaobo Pan
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorYu Tang
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Jincai Wu
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorDr. Ji Xian
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorHao Chen
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorGe Yao
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorFei Chen
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorZhichun Chen
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Dr. Hongzhang Cao
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030 China
Search for more papers by this authorLuya Cao
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030 China
Search for more papers by this authorProf. Dr. Xiaobo Pan
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorYu Tang
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Jincai Wu
State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorAbstract
Stereospecific alternating copolymerization of different chiral cyclic esters is one feasible approach to enrich the structural diversity of copolyesters and tailor their properties. However, dramatically different reactivities of different cyclic esters let a perfectly stereospecific alternating polymerization of these cyclic esters be a challenge, thus the catalyst is required to balance their reactivities. Herein, a remarkable enantiomorphic site effect on chain end control was discovered and successfully utilized to balance the reactivities of highly reactive S, S-lactide (S, S-LA) and low reactive R, R-ethylglycolide (R, R-EG)/R, R-propylglycolide (R, R-PG) during their heterospecific alternating copolymerization. The enantiomorphic site of R, R-SalenAl complex can increase the relative reactivity of R, R-EG/R, R-PG and suppress that of S, S-LA, then a perfectly alternating sequence of the copolymer of S, S-LA and R, R-EG/R, R-PG can be achieved (Palt=0.96/0.91); inversely, using S, S-SalenAl complex, the significant enantiomorphic site effect enlarges the reactivity difference of two monomers, the alternating level was just 0.70/0.68 even to 0.61. Poly(S, S-LA-alt-R, R-EG) with a high alternating regularity exhibits lower glass transition temperatures and a dramatically higher elongation at break (ϵB=449±51 % (Palt=0.96) vs ϵB=6±1% (Palt=0.70)).
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420316-sup-0001-misc_information.pdf4.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. J. Stanford, A. P. Dove, Chem. Soc. Rev. 2010, 39, 486–494;
- 1bC. M. Thomas, Chem. Soc. Rev. 2010, 39, 165–173;
- 1cX. Zhang, M. Fevre, G. O. Jones, R. M. Waymouth, Chem. Rev. 2018, 118, 839–885;
- 1dE. Fazekas, P. A. Lowy, M. Abdul Rahman, A. Lykkeberg, Y. Zhou, R. Chambenahalli, J. A. Garden, Chem. Soc. Rev. 2022, 51, 8793–8814.
- 2X. Xie, Z. Huo, E. Jang, R. Tong, Commun. Chem. 2023, 6, 202.
- 3
- 3aX. Guo, G. Xu, R. Yang, Q. Wang, J. Am. Chem. Soc. 2024, 146, 9084–9095;
- 3bK. Li, J.-L. Cheng, M.-Y. Wang, W. Xiong, H.-Y. Huang, L.-W. Feng, Z. Cai, J.-B. Zhu, Angew. Chem. Int. Ed. 2024, 63, e202405382;
- 3cT. M. Ovitt, G. W. Coates, J. Am. Chem. Soc. 2002, 124, 1316–1326;
- 3dN. Nomura, R. Ishii, M. Akakura, K. Aoi, J. Am. Chem. Soc. 2002, 124, 5938–5939;
- 3eJ.-B. Zhu, E. Y. X. Chen, J. Am. Chem. Soc. 2015, 137, 12506–12509;
- 3fN. Spassky, M. Wisniewski, C. Pluta, A. Le Borgne, Macromol. Chem. Phys. 1996, 197, 2627–2637;
- 3gX. Tang, E. Y. X. Chen, Nat. Commun. 2018, 9, 2345;
- 3hZ. Zhong, P. J. Dijkstra, J. Feijen, J. Am. Chem. Soc. 2003, 125, 11291–11298;
- 3iC. Bakewell, T.-P.-A. Cao, N. Long, X. F. Le Goff, A. Auffrant, C. K. Williams, J. Am. Chem. Soc. 2012, 134, 20577–20580;
- 3jJ. Bruckmoser, S. Pongratz, L. Stieglitz, B. Rieger, J. Am. Chem. Soc. 2023, 145, 11494–11498;
- 3kK. M. Osten, P. Mehrkhodavandi, Acc. Chem. Res. 2017, 50, 2861–2869;
- 3lA. Pilone, K. Press, I. Goldberg, M. Kol, M. Mazzeo, M. Lamberti, J. Am. Chem. Soc. 2014, 136, 2940–2943;
- 3mW. Zhao, F. Cui, J. He, Y. Zhang, E. Y. X. Chen, Chem 2024, doi:10.1016/j.chempr.2024.06.031;
- 3nW. Zhao, J. He, Y. Zhang, E. Y. X. Chen, Trends Chem. 2024, 6, 641–642.
- 4
- 4aA. Amgoune, C. M. Thomas, S. Ilinca, T. Roisnel, J.-F. Carpentier, Angew. Chem. Int. Ed. 2006, 45, 2782–2784;
- 4bR. Ligny, M. M. Hänninen, S. M. Guillaume, J.-F. Carpentier, Chem. Commun. 2018, 54, 8024–8031;
- 4cB. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2001, 123, 3229–3238;
- 4dC. Romain, B. Heinrich, S. B. Laponnaz, S. Dagorne, Chem. Commun. 2012, 48, 2213–2215;
- 4eP. Hormnirun, E. L. Marshall, V. C. Gibson, A. J. P. White, D. J. Williams, J. Am. Chem. Soc. 2004, 126, 2688–2689;
- 4fS. Gesslbauer, R. Savela, Y. Chen, A. J. P. White, C. Romain, ACS Catal. 2019, 9, 7912–7920;
- 4gV. Balasanthiran, M. H. Chisholm, K. Choojun, C. B. Durr, P. M. Wambua, J. Organomet. Chem. 2016, 812, 56–65;
- 4hH. Ma, T. P. Spaniol, J. Okuda, Angew. Chem. Int. Ed. 2006, 45, 7818–7821;
- 4iA. J. Chmura, C. J. Chuck, M. G. Davidson, M. D. Jones, M. D. Lunn, S. D. Bull, M. F. Mahon, Angew. Chem. Int. Ed. 2007, 46, 2280–2283;
- 4jA. J. Chmura, M. G. Davidson, C. J. Frankis, M. D. Jones, M. D. Lunn, Chem. Commun. 2008, 11, 1293–1295;
- 4kA. Amgoune, C. M. Thomas, T. Roisnel, J.-F. Carpentier, Chem. Eur. J. 2006, 12, 169–179;
- 4lN. Maudoux, T. Roisnel, J.-F. Carpentier, Y. Sarazin, Organometallics 2014, 33, 5740–5748;
- 4mZ. Zhou, A. M. LaPointe, T. D. Shaffer, G. W. Coates, Nat. Chem. 2023, 15, 856–861.
- 5
- 5aR. Hador, A. Botta, V. Venditto, S. Lipstman, I. Goldberg, M. Kol, Angew. Chem. Int. Ed. 2019, 58, 14679–14685;
- 5bK. Press, I. Goldberg, M. Kol, Angew. Chem. Int. Ed. 2015, 54, 14858–14861;
- 5cA. Peterson, R. Hador, M. Pink, Y. Popowski, M. Kol, W. B. Tolman, J. Am. Chem. Soc. 2022, 144, 20047–20055.
- 6J. W. Kramer, D. S. Treitler, E. W. Dunn, P. M. Castro, T. Roisnel, C. M. Thomas, G. W. Coates, J. Am. Chem. Soc. 2009, 131, 16042–16044.
- 7C. G. Jaffredo, Y. Chapurina, S. M. Guillaume, J.-F. Carpentier, Angew. Chem. Int. Ed. 2014, 53, 2687–2691.
- 8H.-Y. Huang, W. Xiong, Y.-T. Huang, K. Li, Z. Cai, J.-B. Zhu, Nat. Catal. 2023, 6, 720–728.
- 9
- 9aC. He, J. Xian, H. Fu, F. Cheng, X. Han, X. Pan, Y. Tang, J. Wu, J. Am. Chem. Soc. 2023, 145, 9786–9799;
- 9bZ. Jia, J. Jiang, X. Zhang, Y. Cui, Z. Chen, X. Pan, J. Wu, J. Am. Chem. Soc. 2021, 143, 4421–4432;
- 9cY. Sun, Z. Jia, C. Chen, Y. Cong, X. Mao, J. Wu, J. Am. Chem. Soc. 2017, 139, 10723–10732;
- 9dS. Chen, Z. Jia, L. Cao, Y. Li, X. Han, X. Pan, J. Wu, Macromolecules 2021, 54, 9027–9038;
- 9eZ. Jia, S. Chen, J. Jiang, X. Mao, X. Pan, J. Wu, Inorg. Chem. 2020, 59, 10353–10360.
- 10
- 10aM. S. Young, A. M. LaPointe, S. N. MacMillan, G. W. Coates, J. Am. Chem. Soc. 2024, 146, 18032–18040;
- 10bG. Xu, Q. Mahmood, C. Lv, R. Yang, L. Zhou, Q. Wang, Coord. Chem. Rev. 2020, 414, 213296;
- 10cX. Tang, A. H. Westlie, E. M. Watson, E. Y.-X. Chen, Science 2019, 366, 754–758.
- 11
- 11aY. Lu, J. H. Swisher, T. Y. Meyer, G. W. Coates, J. Am. Chem. Soc. 2021, 143, 4119–4124;
- 11bY. Lu, G. W. Coates, J. Am. Chem. Soc. 2023, 145, 22425–22432.
- 12
- 12aY.-L. Duan, Q. Guo, G.-Y. Liu, Z.-Z. Yi, S.-P. Feng, Y. Huang, Polym. Chem. 2022, 13, 4249–4259;
- 12bG. Li, G. Xu, X. Guo, R. Yang, H. Sun, Q. Wang, ACS Catal. 2024, 14, 1173–1182.
- 13A. S. Narmon, A. Dewaele, K. Bruyninckx, B. F. Sels, P. Van Puyvelde, M. Dusselier, Chem. Sci. 2021, 12, 5672–5681.
- 14P. Hormnirun, E. L. Marshall, V. C. Gibson, R. I. Pugh, A. J. P. White, Proc. Nati. Acad. Sci. U.S.A. 2006, 103, 15343–15348.
- 15
- 15aX. Wang, Y. Huang, X. Xie, Y. Liu, Z. Huo, M. Lin, H. Xin, R. Tong, Nat. Commun. 2023, 14, 3647;
- 15bH. Du, X. Pang, H. Yu, X. Zhuang, X. Chen, D. Cui, X. Wang, X. Jing, Macromolecules 2007, 40, 1904–1913.
- 16J. Jiang, Y. Cui, Y. Lu, B. Zhang, X. Pan, J. Wu, Macromolecules 2020, 53, 946–955.
- 17M. Fineman, S. D. Ross, J. Polym. Sci. 1950, 5, 259–262.
- 18
- 18aM. Ichinose, H. Suematsu, Y. Yasutomi, Y. Nishioka, T. Uchida, T. Katsuki, Angew. Chem. Int. Ed. 2011, 50, 9884–9887;
- 18bS. Tai, T. S. Maskrey, P. R. Nyalapatla, P. Wipf, Chirality 2019, 31, 1014–1027;
- 18cJ. Shen, Z. Xu, S. Yang, S. Li, J. Jiang, Y.-Q. Zhang, J. Am. Chem. Soc. 2023, 145, 21122–21131;
- 18dP. Fabian, K.-C. Tseng, M. Thiruppathy, C. Arata, H.-J. Chen, J. Smeeton, N. Nelson, J. G. Crump, Nat. Commun. 2022, 13, 13;
- 18eN. Nomura, R. Ishii, Y. Yamamoto, T. Kondo, Chem. Eur. J. 2007, 13, 4433–4451.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.