Unexpected Magnetic Moments in Manganese-Doped (CdSe)13 Nanoclusters: Role of Ligands
This article relates to:
-
Yi-Hsin Liu
- Volume 137Issue 7Angewandte Chemie
- First Published online: January 15, 2025
Guo-Lun Huang
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
These authors contributed equally.
Search for more papers by this authorKo.-Yu Ting
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
These authors contributed equally.
Search for more papers by this authorDr. Nagaraju Narayanam
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorDong-Rong Wu
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorTzung-En Hsieh
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Department of Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, 12489 Germany
Search for more papers by this authorKai-Chih Tsai
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorDa-Wei Yang
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorQi-Xun Tang
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorBo-Kai Su
Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan, ROC
Search for more papers by this authorYu-Ting Kang
Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan, ROC
Search for more papers by this authorShing-Jong Huang
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
Search for more papers by this authorChing-Hsiang Chen
Sustainable Energy Development Center, National Taiwan University of Science & Technology, Taipei, 10673 Taiwan, ROC
Search for more papers by this authorYuan-Pin Chang
Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan, ROC
Search for more papers by this authorLan-Sheng Yang
Department of Physics, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorYu-Chiang Chao
Department of Physics, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorCorresponding Author
Prof. Dr. Elise Yu-Tzu Li
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorCorresponding Author
Prof. Dr. Yi-Hsin Liu
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorGuo-Lun Huang
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
These authors contributed equally.
Search for more papers by this authorKo.-Yu Ting
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
These authors contributed equally.
Search for more papers by this authorDr. Nagaraju Narayanam
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorDong-Rong Wu
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorTzung-En Hsieh
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Department of Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, 12489 Germany
Search for more papers by this authorKai-Chih Tsai
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorDa-Wei Yang
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorQi-Xun Tang
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorBo-Kai Su
Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan, ROC
Search for more papers by this authorYu-Ting Kang
Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan, ROC
Search for more papers by this authorShing-Jong Huang
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
Search for more papers by this authorChing-Hsiang Chen
Sustainable Energy Development Center, National Taiwan University of Science & Technology, Taipei, 10673 Taiwan, ROC
Search for more papers by this authorYuan-Pin Chang
Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan, ROC
Search for more papers by this authorLan-Sheng Yang
Department of Physics, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorYu-Chiang Chao
Department of Physics, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorCorresponding Author
Prof. Dr. Elise Yu-Tzu Li
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorCorresponding Author
Prof. Dr. Yi-Hsin Liu
Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, ROC
Search for more papers by this authorAbstract
This study explores the enhancement in magnetic and photoluminescence properties of Mn2+-doped (CdSe)13 nanoclusters, significantly influenced by the introduction of paramagnetic centers through doping, facilitated by optimized precursor chemistry and precisely controlled surface ligand interactions. Using a cost-effective and scalable synthesis approach with elemental Se and NaBH4 (Se-NaBH4) in n-octylamine, we tailored bonding configurations (Cd−O, Cd−N, and Cd−Se) on the surface of nanoclusters, as confirmed by EXAFS analysis. These bonding configurations allowed for tunable Mn2+-doping with tetrahedral coordination, further stabilized by hydrogen-bonded acetate ligands, as evidenced by 13C NMR and IR spectroscopy. Mulliken charge analysis indicates that the charge redistribution on Se2− suggests electron transfer between surface ligands and the nanocluster, contributing to spin fluctuations. These tailored configurations markedly increased the nanoclusters′ magnetic susceptibility and photoluminescence efficiency. The resulting nanoclusters demonstrated a clear concentration-dependent response in emission lifetimes and intensities upon exposure to magnetic field effects (MFE) and spin-spin coupling, alongside a large magnetic moment exceeding 40 μB at 180 K. These findings highlight the potential of these nanoclusters for magneto-optical devices and spintronic applications, showcasing their tunable magnetic properties and exciton dynamics.
Conflict of Interests
The authors declare no competing financial interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420257-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Yang, H. Zhang, Y. Deng, X. Kong, Y. Wang, Nanoscale 2024, 16, 17230–17247;
- 1bX. Kong, Y. Yang, H. Zhang, Y.-H. Liu, Y. Wang, Coord. Chem. Rev. 2024, 518, 216065;
- 1cK. Lee, G. Deng, M. S. Bootharaju, T. Hyeon, Acc. Chem. Res. 2023, 56, 1118–1127;
- 1dJ. Yang, F. Muckel, B. K. Choi, S. Lorenz, I. Y. Kim, J. Ackermann, H. Chang, T. Czerney, V. S. Kale, S.-J. Hwang, G. Bacher, T. Hyeon, Nano Lett. 2018, 18, 7350–7357;
- 1eJ. Yang, F. Muckel, W. Baek, R. Fainblat, H. Chang, G. Bacher, T. Hyeon, J. Am. Chem. Soc. 2017, 139, 6761–6770;
- 1fF. Muckel, J. Yang, S. Lorenz, W. Baek, H. Chang, T. Hyeon, G. Bacher, R. Fainblat, ACS Nano. 2016, 10, 7135–7141.
- 2
- 2aM. A. Boles, D. Ling, T. Hyeon, D. V. Talapin, Nat. Mater. 2016, 15, 141–153;
- 2bJ. Zhang, H. Zhang, W. Cao, Z. Pang, J. Li, Y. Shu, C. Zhu, X. Kong, L. Wang, X. Peng, J. Am. Chem. Soc. 2019, 141, 15675–15683;
- 2cS. Cosseddu, R. Pascazio, C. Giansante, L. Manna, I. Infante, Nanoscale 2023, 15, 7410–7419;
- 2dS. Kilina, K. A. Velizhanin, S. Ivanov, O. V. Prezhdo, S. Tretiak, ACS Nano. 2012, 6, 6515–6524;
- 2eM. S. Bootharaju, W. Baek, S. Lee, H. Chang, J. Kim, T. Hyeon, Small. 2021, 17, 2002067.
- 3
- 3aT.-E. Hsieh, T.-W. Yang, C.-Y. Hsieh, S.-J. Huang, Y.-Q. Yeh, C.-H. Chen, E. Y. Li, Y.-H. Liu, Chem. Mater. 2018, 30, 5468–5477;
- 3bJ. M. Azpiroz, J. M. Matxain, I. Infante, X. Lopez, J. M. Ugalde, Phys. Chem. Chem. Phys. 2013, 15, 10996–11005;
- 3cJ. Owen, Science. 2015, 347, 615–616.
- 4
- 4aJ. Cassidy, D. Harankahage, D. Porotnikov, A. V. Malko, M. Zamkov, ACS Energy Lett. 2022, 7, 1202–1213;
- 4bC. Palencia, K. Yu, K. Boldt, ACS Nano 2020, 14, 1227–1235;
- 4cS. H. Kim, T. Shin, M. T. Man, H. S. Lee, Appl. Nanosci. 2022, 12, 3297–3302.
- 5W. Cao, A. Yakimov, X. Qian, J. Li, X. Peng, X. Kong, C. Copéret, Angew. Chem. Int. Ed. 2023, 62, e202312713.
- 6
- 6aJ. Joo, J. S. Son, S. G. Kwon, J. H. Yu, T. Hyeon, J. Am. Chem. Soc. 2006, 128, 5632–5633;
- 6bS. Ithurria, B. Dubertret, J. Am. Chem. Soc. 2008, 130, 16504–16505;
- 6cR. S. Koster, C. Fang, A. Van Blaaderen, M. Dijkstra, M. A. Van Huis, Phys. Chem. Chem. Phys. 2016, 18, 22021–22024;
- 6dA. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M. F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M. H. Stewart, I. L. Medintz, E. Stratakis, W. J. Parak, A. G. Kanaras, Chem. Rev. 2019, 119, 4819–4880;
- 6eH. Sun, W. E. Buhro, Chem. Mater. 2020, 32, 5814–5826;
- 6fB. M. Cossairt, J. S. Owen, Chem. Mater. 2011, 23, 3114–3119.
- 7N. C. Anderson, M. P. Hendricks, J. J. Choi, J. S. Owen, J. Am. Chem. Soc. 2013, 135, 18536–18548.
- 8S. Mourdikoudis, M. Menelaou, N. Fiuza-Maneiro, G. Zheng, S. Wei, J. Pérez-Juste, L. Polavarapu, Z. Sofer, Nanoscale Horiz. 2022, 7, 941–1015.
- 9
- 9aF. Pabst, S. Palazzese, F. Seewald, S. Yamamoto, D. Gorbunov, S. Chattopadhyay, T. Herrmannsdörfer, C. Ritter, K. Finzel, T. Doert, H. H. Klauss, J. Wosnitza, M. Ruck, Adv. Mater. 2023, 35, 2207945;
- 9bL. Zhang, R. Clerac, P. Heijboer, W. Schmitt, Angew. Chem. Int. Ed. 2012, 51, 3007–3011;
- 9cL. Zhang, R. Clérac, C. I. Onet, M. Venkatesan, P. Heijboer, W. Schmitt, Chem. Eur. J. 2012, 18, 13984–13988;
- 9dR. Bagai, G. Christou, Chem. Soc. Rev. 2009, 38, 1011–1026.
- 10
- 10aB. Dieny, I. L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. O. Demokritov, J. Akerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A. V. Chumak, A. Hirohata, S. Mangin, S. O. Valenzuela, M. C. Onbaşlı, M. D'Aquino, G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell, O. Chubykalo-Fesenko, P. Bortolotti, Nat. Electron. 2020, 3, 446–459;
- 10bA. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, R. A. Duine, Nat. Mater. 2015, 14, 871–882;
- 10cV. Proshchenko, Y. Dahnovsky, J. Phys. Chem. C. 2014, 118, 28314–28321.
- 11R. Beaulac, P. I. Archer, S. T. Ochsenbein, D. R. Gamelin, Adv. Funct. Mater. 2008, 18, 3873–3891.
- 12S.-Y. W. Guo-Liang Li, K.-M. Fan, Magn. Reson. Chem. 2024, 62, 610–618.
- 13
- 13aF. Liu, L. Biadala, A. V. Rodina, D. R. Yakovlev, D. Dunker, C. Javaux, J.-P. Hermier, A. L. Efros, B. Dubertret, M. Bayer, Phys. Rev. B. 2013, 88, 035302;
- 13bS. Dhar, L. Pérez, O. Brandt, A. Trampert, K. H. Ploog, J. Keller, B. Beschoten, Phys. Rev. B. 2005, 72, 245203.
- 14
- 14aJ. H. Yu, X. Liu, K. E. Kweon, J. Joo, J. Park, K.-T. Ko, D. W. Lee, S. Shen, K. Tivakornsasithorn, J. S. Son, J.-H. Park, Y.-W. Kim, G. S. Hwang, M. Dobrowolska, J. K. Furdyna, T. Hyeon, Nat. Mater. 2010, 9, 47–53;
- 14bB. S. O. Halder, P. Rajput, N. Mohapatra, S. N. Jha, J. Suffczyński, W. Pacuski, S. Rath, Sci. Rep. 2019, 9, 1804.
- 15C. J. Barrows, R. Fainblat, D. R. Gamelin, J. Mater. Chem. C. 2017, 5, 5232–5238.
- 16
- 16aD. A. Fenoll, M. Sodupe, X. Solans-Monfort, ACS Omega. 2023, 8, 11467–11478;
- 16bT. Kurihara, Y. Noda, K. Takegoshi, ACS Omega. 2019, 4, 3476–3483.
- 17V. Baturin, S. Lepeshkin, N. Bushlanova, Y. Uspenskii, Phys. Chem. Chem. Phys. 2020, 22, 26299–26305.
- 18S. B. Singh, M. V. Limaye, S. K. Date, S. K. Kulkarni, Chem. Phys. Lett. 2008, 464, 208–210.
- 19H. Shindo, T. L. Brown, J. Am. Chem. Soc. 1965, 87, 1904–1909.
- 20Y. Chen, R. W. Dorn, M. P. Hanrahan, L. Wei, R. Blome-Fernández, A. M. Medina-Gonzalez, M. A. S. Adamson, A. H. Flintgruber, J. Vela, A. J. Rossini, J. Am. Chem. Soc. 2021, 143, 8747–8760.
- 21M. S. Bootharaju, W. Baek, G. Deng, K. Singh, O. Voznyy, N. Zheng, T. Hyeon, Chem. 2022, 8, 2978–2989.
- 22J. Yang, R. Fainblat, S. G. Kwon, F. Muckel, J. H. Yu, H. Terlinden, B. H. Kim, D. Iavarone, M. K. Choi, I. Y. Kim, I. Park, H. K. Hong, J. Lee, J. S. Son, Z. Lee, K. Kang, S. J. Hwang, G. Bacher, T. Hyeon, J. Am. Chem. Soc. 2015, 137, 12776–12779.
- 23Y. Zhou, W. E. Buhro, J. Am. Chem. Soc. 2017, 139, 12887–12890.
- 24
- 24aR. Wu, G. Hernández, J. D. Odom, R. B. Dunlap, L. A. Silks, Chem. Commun. 1996, 1125–1126;
- 24bT. I. Madzhidov, G. A. Chmutova, J. Mol. Struct. 2010, 959, 1–7;
- 24cS. H. Deshmukh, S. Yadav, T. Chowdhury, A. Pathania, S. Sapra, S. Bagchi, Nanoscale 2024, 16, 14922–14931.
- 25
- 25aA. S. Nair, B. Pathak, J. Phys. Chem. C. 2022, 126, 6171–6188;
- 25bJ. S. Arey, P. C. Aeberhard, I. C. Lin, U. Rothlisberger, J. Phys. Chem. B. 2009, 113, 4726–4732.
- 26
- 26aJ. Bieniek, W. Baek, T. Hyeon, G. Bacher, R. Fainblat, J. Chem. Phys. 2023, 158, 224308;
- 26bS. J. Zou, S. T. Wang, M. F. Wu, W. B. Jian, S. J. Cheng, ACS Nano. 2015, 9, 503–511;
- 26cY. Liu, J. Zhang, B. Han, X. Wang, Z. Wang, C. Xue, G. Bian, D. Hu, R. Zhou, D.-S. Li, Z. Wang, Z. Ouyang, M. Li, T. Wu, J. Am. Chem. Soc. 2020, 142, 6649–6660.
- 27X. Yang, C. Pu, H. Qin, S. Liu, Z. Xu, X. Peng, J. Am. Chem. Soc. 2019, 141, 2288–2298.
- 28
- 28aT. Neumann, S. Feldmann, P. Moser, A. Delhomme, J. Zerhoch, T. van de Goor, S. Wang, M. Dyksik, T. Winkler, J. J. Finley, P. Plochocka, M. S. Brandt, C. Faugeras, A. V. Stier, F. Deschler, Nat. Commun. 2021, 12, 3489;
- 28bD. Sun, H. Zhong, X. Yao, Y. Chang, Y. Zhao, Y. Jiang, Mater. Lett. 2014, 125, 132–135.
- 29E. V. Shornikova, D. R. Yakovlev, D. O. Tolmachev, V. Y. Ivanov, I. V. Kalitukha, V. F. Sapega, D. Kudlacik, Y. G. Kusrayev, A. A. Golovatenko, S. Shendre, S. Delikanli, H. V. Demir, M. Bayer, ACS Nano. 2020, 14, 9032–9041.
- 30
- 30aR. Beaulac, P. I. Archer, X. Liu, S. Lee, G. M. Salley, M. Dobrowolska, J. K. Furdyna, D. R. Gamelin, Nano Lett. 2008, 8, 1197–1201;
- 30bR. Beaulac, P. I. Archer, J. Van Rijssel, A. Meijerink, D. R. Gamelin, Nano Lett. 2008, 8, 2949–2953;
- 30cP. Mondal, S. Sathiyamani, K. Gahlot, R. Viswanatha, J. Phys. Chem. C. 2021, 125, 11007–11013.
- 31A. Rodina, A. L. Efros, Nano Lett. 2015, 15, 4214–4222.
- 32W. D. Rice, W. Liu, T. A. Baker, N. A. Sinitsyn, V. I. Klimov, S. A. Crooker, Nat. Nanotechnol. 2016, 11, 137–142.
- 33F. Wang, W. E. Buhro, J. Am. Chem. Soc. 2012, 134, 5369–5380.
- 34
- 34aT. Goldzak, A. R. McIsaac, T. Van Voorhis, Nat. Commun. 2021, 12, 890;
- 34bR. W. Meulenberg, J. R. I. Lee, S. K. McCall, K. M. Hanif, D. Haskel, J. C. Lang, L. J. Terminello, T. Van Buuren, J. Am. Chem. Soc. 2009, 131, 6888–6889.
- 35S. Lorenz, C. S. Erickson, M. Riesner, D. R. Gamelin, R. Fainblat, G. Bacher, Nano Lett. 2020, 20, 1896–1906.
- 36
- 36aG. Qiang, A. A. Golovatenko, E. V. Shornikova, D. R. Yakovlev, A. V. Rodina, E. A. Zhukov, I. V. Kalitukha, V. F. Sapega, V. K. Kaibyshev, M. A. Prosnikov, P. C. M. Christianen, A. A. Onushchenko, M. Bayer, Nanoscale. 2021, 13, 790–800;
- 36bF. Muckel, S. Lorenz, J. Yang, T. A. Nugraha, E. Scalise, T. Hyeon, S. Wippermann, G. Bacher, Nat. Commun. 2020, 11, 4127;
- 36cE. V. Shornikova, A. A. Golovatenko, D. R. Yakovlev, A. V. Rodina, L. Biadala, G. Qiang, A. Kuntzmann, M. Nasilowski, B. Dubertret, A. Polovitsyn, I. Moreels, M. Bayer, Nat. Nanotechnol. 2020, 15, 277–282.
- 37D. Lujan, J. Choe, S. Chaudhary, G. Ye, C. Nnokwe, M. Rodriguez-Vega, J. He, F. Y. Gao, T. N. Nunley, E. Baldini, J. Zhou, G. A. Fiete, R. He, X. Li, Proc. Natl. Acad. Sci. USA 2024, 121, e2304360121.
- 38
- 38aR. Beaulac, L. Schneider, P. I. Archer, G. Bacher, D. R. Gamelin, Science. 2009, 325, 973–976;
- 38bH. D. Nelson, L. R. Bradshaw, C. J. Barrows, V. A. Vlaskin, D. R. Gamelin, ACS Nano. 2015, 9, 11177–11191;
- 38cW. D. Rice, W. Liu, V. Pinchetti, D. R. Yakovlev, V. I. Klimov, S. A. Crooker, Nano Lett. 2017, 17, 3068–3075.
- 39C. Chappert, A. Fert, F. N. Van Dau, Nat. Mater. 2007, 6, 813–823.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.