Energy-Efficient Co-production of Benzoquinone and H2 Using Waste Phenol in a Hybrid Alkali/Acid Flow Cell
Chengchao He
Value-Added Utilization of Carbocoal Derivative Liquid-Shaanxi University Engineering Research Center, Yulin University, Yulin, 719000 P. R. China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorDuo Pan
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorKai Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorDr. Junxiang Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorQinlong Zhang
Value-Added Utilization of Carbocoal Derivative Liquid-Shaanxi University Engineering Research Center, Yulin University, Yulin, 719000 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Hao Zhang
Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA UK
Search for more papers by this authorCorresponding Author
Prof. Zhifang Zhang
Value-Added Utilization of Carbocoal Derivative Liquid-Shaanxi University Engineering Research Center, Yulin University, Yulin, 719000 P. R. China
Shaanxi Yuanda Zhengbei Energy Technology Co., Ltd., Research and Development Department, Yulin, 719000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhenhai Wen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorChengchao He
Value-Added Utilization of Carbocoal Derivative Liquid-Shaanxi University Engineering Research Center, Yulin University, Yulin, 719000 P. R. China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorDuo Pan
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorKai Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorDr. Junxiang Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorQinlong Zhang
Value-Added Utilization of Carbocoal Derivative Liquid-Shaanxi University Engineering Research Center, Yulin University, Yulin, 719000 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Hao Zhang
Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA UK
Search for more papers by this authorCorresponding Author
Prof. Zhifang Zhang
Value-Added Utilization of Carbocoal Derivative Liquid-Shaanxi University Engineering Research Center, Yulin University, Yulin, 719000 P. R. China
Shaanxi Yuanda Zhengbei Energy Technology Co., Ltd., Research and Development Department, Yulin, 719000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhenhai Wen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorAbstract
In both the manufacturing and chemical industries, benzoquinone is a crucial chemical product. A perfect and economical method for making benzoquinone is the electrochemical oxidation of phenol, thanks to the traditional thermal catalytic oxidation of phenol process requires high cost, serious pollution and harsh reaction conditions. Here, a unique heterostructure electrocatalyst on nickel foam (NF) consisting of nickel sulfide and nickel oxide (Ni9S8-Ni15O16/NF) was produced, and this catalyst exhibited a low overpotential (1.35 V vs. RHE) and prominent selectivity (99 %) for electrochemical phenol oxidation reaction (EOP). Ni9S8-Ni15O16/NF is beneficial for lowering the reaction energy barrier and boosting reactivity in the EOP process according to density functional theory (DFT) calculations. Additionally, an alkali/acid hybrid flow cell was successfully established by connecting Ni9S8-Ni15O16/NF and commercial RuIr/Ti in series to catalyze phenol oxidation in an alkaline medium and hydrogen evolution in an acid medium, respectively. A cell voltage of only 0.60 V was applied to produce a current density of 10 mA cm−2. Meanwhile, the system continued to operate at 0.90 V for 12 days, showing remarkable long-term stability. The unique configuration of the acid-base hybrid flow cell electrolyzer provides valuable guidance for the efficient and environmentally friendly electrooxidation of phenol to benzoquinone.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202407079-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Nat. Commun. 2017, 8, 15437.
- 2J. Ge, R. R. Chen, X. Ren, J. Liu, S. J. H. Ong, Z. J. Xu, Adv. Mater. 2021, 33, 2101091.
- 3P. Shen, B. Zhou, Z. Chen, W. Xiao, Y. Fu, J. Wan, Z. Wu, L. Wang, Appl. Catal. B 2023, 325, 122305.
- 4J. An, N. Li, Y. Wu, S. Wang, C. Liao, Q. Zhao, L. Zhou, T. Li, X. Wang, Y. Feng, Environ. Sci. Technol. 2020, 54, 10916–10925.
- 5H. Li, F. Meng, W. Duan, Y. Lin, Y. Zheng, Ecotoxicol. Environ. Saf. 2019, 184, 109658.
- 6H. Liu, T. Jiang, B. Han, S. Liang, Y. Zhou, Science 2009, 326, 1250–1252.
- 7D. T. Chin, N. R. K. Vilambi, C. Y. Cheng, J. Appl. Electrochem. 1989, 19, 459–461.
- 8Y.-q. Wang, B. Gu, W.-l. Xu, J. Hazard. Mater. 2009, 162, 1159–1164.
- 9L. Suhadolnik, D. Lašič Jurković, B. Likozar, M. Bele, S. Drev, M. Čeh, Appl. Catal. B 2019, 257, 117894.
- 10A. Y. J. Feng, X. Y. Li, Water Res. 2003, 37, 2399–2407.
- 11Q. Chen, B. Wei, Y. Wei, P. Zhai, W. Liu, X. Gu, Z. Yang, J. Zuo, R. Zhang, Y. Gong, Appl. Catal. B 2022, 301, 120754.
- 12J. Yin, J. Jin, H. Lin, Z. Yin, J. Li, M. Lu, L. Guo, P. Xi, Y. Tang, C.-H. Yan, Adv. Sci. 2020, 7, 1903070.
- 13J. Song, C. Wei, Z. F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Adv. Sci. 2020, 49, 2196–2214.
- 14N. Zhang, Y. Hu, L. An, Q. Li, J. Yin, J. Li, R. Yang, M. Lu, S. Zhang, P. Xi, C. H. Yan, Angew. Chem. Int. Ed. 2022, 61, e202207217.
- 15R. M. Navarro, M. A. Peña, J. L. G. Fierro, Chem. Rev. 2007, 107, 3952–3991.
- 16C. Tsounis, X. Lu, N. M. Bedford, B. Subhash, L. Thomsen, Q. Zhang, Z. Ma, K. Ostrikov, A. Bendavid, J. A. Scott, R. Amal, Z. Han, ACS Nano 2020, 14, 11327–11340.
- 17Q. Zhang, N. M. Bedford, J. Pan, X. Lu, R. Amal, Adv. Energy Mater. 2019, 9, 1901312.
- 18B. You, X. Liu, G. Hu, S. Gul, J. Yano, D.-e. Jiang, Y. Sun, J. Am. Chem. Soc. 2017, 139, 12283–12290.
- 19L. Zhang, W. Cai, N. Bao, Adv. Mater. 2021, 33, 2100745.
- 20M. Cui, C. Yang, B. Li, Q. Dong, M. Wu, S. Hwang, H. Xie, X. Wang, G. Wang, L. Hu, Adv. Energy Mater. 2021, 11, 2002887.
- 21J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Adv. Mater. 2016, 28, 215–230.
- 22B. You, X. Liu, N. Jiang, Y. Sun, J. Am. Chem. Soc. 2016, 138, 13639–13646.
- 23J. Zheng, W. Zhou, T. Liu, S. Liu, C. Wang, L. Guo, Nanoscale 2017, 9, 4409–4418.
- 24P. Ding, C. Meng, J. Liang, T. Li, Y. Wang, Q. Liu, Y. Luo, G. Cui, A. M. Asiri, S. Lu, X. Sun, Inorg. Chem. 2021, 60, 12703–12708.
- 25T.-J. Wang, F.-M. Li, H. Huang, S.-W. Yin, P. Chen, P.-J. Jin, Y. Chen, Adv. Funct. Mater. 2020, 30, 2000534.
- 26W. Wang, Y.-B. Zhu, Q. Wen, Y. Wang, J. Xia, C. Li, M.-W. Chen, Y. Liu, H. Li, H.-A. Wu, T. Zhai, Adv. Mater. 2019, 31, 1900528.
- 27Q. Shi, C. Zhu, M. Tian, D. Su, M. Fu, M. H. Engelhard, I. Chowdhury, S. Feng, D. Du, Y. Lin, Nano Energy. 2018, 53, 206–212.
- 28X. Liu, L. Ning, M. Deng, J. Wu, A. Zhu, Q. Zhang, Q. Liu, Nanoscale 2019, 11, 3311–3317.
- 29G. Wang, J. Chen, P. Cai, J. Jia, Z. Wen, J. Mater. Chem. A 2018, 6, 17763–17770.
- 30C. Li, Y. Liu, Z. Zhuo, H. Ju, D. Li, Y. Guo, X. Wu, H. Li, T. Zhai, Adv. Energy Mater. 2018, 8, 1801775.
- 31Y. Ding, Y. Li, Y. Xue, B. Miao, S. Li, Y. Jiang, X. Liu, Y. Chen, Nanoscale 2019, 11, 1058–1064.
- 32X. Luo, C. Liu, X. Wang, Q. Shao, Y. Pi, T. Zhu, Y. Li, X. Huang, Nano Lett. 2020, 20, 1967–1973.
- 33X. Liu, B. Li, G. Han, X. Liu, Z. Cao, D.-e. Jiang, Y. Sun, Nat. Commun. 2021, 12, 1868.
- 34Y. Zhu, J. Zhang, Q. Qian, Y. Li, Z. Li, Y. Liu, C. Xiao, G. Zhang, Y. Xie, Angew. Chem. Int. Ed. 2022, 61, e202113082.
- 35L. Fan, Y. Ji, G. Wang, J. Chen, K. Chen, X. Liu, Z. Wen, J. Am. Chem. Soc. 2022, 144, 7224–7235.
- 36H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C.-P. Li, M. Du, Adv. Funct. Mater. 2020, 30, 1910596.
- 37T. Li, T. Lu, Y. Li, J. Yin, Y. Tang, M. Zhang, H. Pang, L. Xu, J. Yang, Y. Zhang, Chem. Eng. J. 2021, 428, 131094.
- 38W. Dai, T. Lu, Y. Pan, J. Power Sources 2019, 430, 104–111.
- 39S. Wang, P. He, Z. Xie, L. Jia, M. He, X. Zhang, F. Dong, H. Liu, Y. Zhang, C. Li, Electrochim. Acta 2019, 296, 644–652.
- 40Q. Yang, C. Lv, Z. Huang, C. Zhang, Int. J. Hydrogen Energy 2018, 43, 7872–7880.
- 41J. Chen, J. Chen, H. Cui, C. Wang, ACS Appl. Mater. Interfaces 2019, 11, 34819–34826.
- 42C.-F. Li, L.-J. Xie, J.-W. Zhao, L.-F. Gu, J.-Q. Wu, G.-R. Li, Appl. Catal. B 2022, 306, 121097.
- 43L. Peng, J. Shen, X. Zheng, R. Xiang, M. Deng, Z. Mao, Z. Feng, L. Zhang, L. Li, Z. Wei, J. Catal. 2019, 369, 345–351.
- 44X.-F. Lu, L.-F. Gu, J.-W. Wang, J.-X. Wu, P.-Q. Liao, G.-R. Li, Adv. Mater. 2017, 29, 1604437.
- 45V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461–5466.
- 46H. Su, S. Song, S. Li, Y. Gao, L. Ge, W. Song, T. Ma, J. Liu, Appl. Catal. B 2021, 293, 120225.
- 47C. Liu, M. Hirohara, T. Maekawa, R. Chang, T. Hayashi, C.-Y. Chiang, Appl. Catal. B 2020, 265, 118543.
- 48Y. Shi, W. Du, W. Zhou, C. Wang, S. Lu, S. Lu, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 22470–22474.
- 49H. Zhu, Z. Zhu, J. Hao, S. Sun, S. Lu, C. Wang, P. Ma, W. Dong, M. Du, Chem. Eng. J. 2022, 431, 133251.
- 50M. Han, C. Wang, J. Zhong, J. Han, N. Wang, A. Seifitokaldani, Y. Yu, Y. Liu, X. Sun, A. Vomiero, H. Liang, Appl. Catal. B 2022, 301, 120764.
- 51J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886–17892.
- 52J. Sun, W. Xu, C. Lv, L. Zhang, M. Shakouri, Y. Peng, Q. Wang, X. Yang, D. Yuan, M. Huang, Y. Hu, D. Yang, L. Zhang, Appl. Catal. B 2021, 286, 119882.
- 53Y. Xu, M. Liu, M. Wang, T. Ren, K. Ren, Z. Wang, X. Li, L. Wang, H. Wang, Appl. Catal. B 2022, 300, 120753.
- 54Y. Ding, P. Cai, Z. Wen, Chem. Soc. Rev. 2021, 50, 1495–1511.
- 55W.-W. Tian, J.-T. Ren, Z.-Y. Yuan, Chem. Soc. Rev. 2022, 317, 121764.
- 56R. Andaveh, A. Sabour Rouhaghdam, J. Ai, M. Maleki, K. Wang, A. Seif, G. Barati Darband, J. Li, Appl. Catal. B 2023, 325, 122355.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.