Non-Covalent and Covalent Binding of New Mixed-Valence Cage-like Polyoxidovanadate Clusters to Lysozyme
This article relates to:
-
Innenrücktitelbild: Non-Covalent and Covalent Binding of New Mixed-Valence Cage-like Polyoxidovanadate Clusters to Lysozyme (Angew. Chem. 31/2024)
- Volume 136Issue 31Angewandte Chemie
- First Published online: July 9, 2024
Gabriella Tito
Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
Search for more papers by this authorDr. Giarita Ferraro
Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
Search for more papers by this authorFederico Pisanu
Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
Search for more papers by this authorCorresponding Author
Prof. Eugenio Garribba
Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
Search for more papers by this authorCorresponding Author
Prof. Antonello Merlino
Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
Search for more papers by this authorGabriella Tito
Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
Search for more papers by this authorDr. Giarita Ferraro
Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
Search for more papers by this authorFederico Pisanu
Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
Search for more papers by this authorCorresponding Author
Prof. Eugenio Garribba
Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
Search for more papers by this authorCorresponding Author
Prof. Antonello Merlino
Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
Search for more papers by this authorAbstract
The high-resolution X-ray structures of the model protein lysozyme in the presence of the potential drug [VIVO(acetylacetonato)2] from crystals grown in 1.1 M NaCl, 0.1 M sodium acetate at pH 4.0 reveal the binding to the protein of different and unexpected mixed-valence cage-like polyoxidovanadates (POVs): [V15O36(OH2)]5−, which non-covalently interacts with the lysozyme surface, [V15O33(OH2)]+ and [V20O51(OH2)]n− (this latter based on an unusual {V18O43} cage) which covalently bind the protein. EPR spectroscopy confirms the partial oxidation of VIV to VV and the formation of mixed-valence species. The results indicate that the interaction with proteins can stabilize the structure of unexpected – both for dimension and architecture – POVs, not observed in aqueous solution.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information. Coordinates and structure factors were deposited in the Protein Data Bank under the accession codes 9EX0, 9EX1, and 9EX2.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202406669-sup-0001-misc_information.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Bijelic, M. Aureliano, A. Rompel, Chem. Commun. 2018, 54, 1153–1169.
- 2J. Livage, Coord. Chem. Rev. 1998, 178–180, 999–1018.
- 3Y. Hayashi, Coord. Chem. Rev. 2011, 255, 2270–2280.
- 4A. Bijelic, M. Aureliano, A. Rompel, Angew. Chem. Int. Ed. 2019, 58, 2980–2999.
- 5M. Aureliano, N. I. Gumerova, G. Sciortino, E. Garribba, A. Rompel, D. C. Crans, Coord. Chem. Rev. 2021, 447, 214143.
- 6M. Aureliano, BioChem. 2022, 2, 8–26.
10.3390/biochem2010002 Google Scholar
- 7A. Díaz, R. Vázquez-Roque, K. Carreto-Meneses, D. Moroni-González, J. A. Moreno-Rodríguez, S. Treviño, J. Chem. Neuroanat. 2023, 129, 102256.
- 8N. I. Gumerova, A. Rompel, Chem. Soc. Rev. 2020, 49, 7568–7601.
- 9N. I. Gumerova, A. Rompel, Sci. Adv. 2023, 9, eadi0814.
- 10A. Al-Qatati, F. L. Fontes, B. G. Barisas, D. Zhang, D. A. Roess, D. C. Crans, Dalton Trans. 2013, 42, 11912.
- 11D. C. Crans, B. J. Peters, X. Wu, C. C. McLauchlan, Coord. Chem. Rev. 2017, 344, 115–130.
- 12D. Althumairy, K. Postal, B. G. Barisas, G. G. Nunes, D. A. Roess, D. C. Crans, Metallomics 2020, 12, 1044–1061.
- 13A. Dumitrescu, C. Maxim, M. Badea, A. M. Rostas, A. Ciorîţă, A. Tirsoaga, R. Olar, IJMS 2023, 24, 17137.
- 14M. Aureliano, N. I. Gumerova, G. Sciortino, E. Garribba, C. C. McLauchlan, A. Rompel, D. C. Crans, Coord. Chem. Rev. 2022, 454, 214344.
- 15N. I. Gumerova, A. Rompel, Inorg. Chem. 2021, 60, 6109–6114.
- 16G. Sciortino, M. Aureliano, E. Garribba, Inorg. Chem. 2021, 60, 334–344.
- 17J. Costa Pessoa, M. F. A. Santos, I. Correia, D. Sanna, G. Sciortino, E. Garribba, Coord. Chem. Rev. 2021, 449, 214192.
- 18S. S. Amin, K. Cryer, B. Zhang, S. K. Dutta, S. S. Eaton, O. P. Anderson, S. M. Miller, B. A. Reul, S. M. Brichard, D. C. Crans, Inorg. Chem. 2000, 39, 406–416.
- 19H. Ou, L. Yan, D. Mustafi, M. W. Makinen, M. J. Brady, J. Biol. Inorg. Chem. 2005, 10, 874–886.
- 20D. C. Crans, J. Inorg. Biochem. 2000, 80, 123–131.
- 21Y. Fu, Q. Wang, X.-G. Yang, X.-D. Yang, K. Wang, J. Biol. Inorg. Chem. 2008, 13, 1001–1009.
- 22G. Ferraro, G. Tito, G. Sciortino, E. Garribba, A. Merlino, Angew. Chem. Int. Ed. 2023, 62, e202310655.
- 23A. Merlino, T. Marzo, L. Messori, Chem. Eur. J. 2017, 23, 6942–6947.
- 24A. Casini, G. Mastrobuoni, C. Temperini, C. Gabbiani, S. Francese, G. Moneti, C. T. Supuran, A. Scozzafava, L. Messori, Chem. Commun. 2007, 156–158.
- 25M. P. Sullivan, M. Cziferszky, I. Tolbatov, D. Truong, D. Mercadante, N. Re, R. Gust, D. C. Goldstone, C. G. Hartinger, Angew. Chem. Int. Ed. 2021, 60, 19928–19932.
- 26F. Zobi, B. Spingler, Inorg. Chem. 2012, 51, 1210–1212.
- 27T. Santos-Silva, A. Mukhopadhyay, J. D. Seixas, G. J. L. Bernardes, C. C. Romão, M. J. Romão, J. Am. Chem. Soc. 2011, 133, 1192–1195.
- 28F. J. F. Jacobs, J. R. Helliwell, A. Brink, IUCrJ 2024, 11, 359–373.
- 29G. Sciortino, J.-D. Maréchal, E. Garribba, Inorg. Chem. Front. 2021, 8, 1951–1974.
- 30M. C. Vaney, S. Maignan, M. Riès-Kautt, A. Ducruix, Acta Crystallogr. Sect. D 1996, 52, 505–517.
- 31A. C. Rizzi, N. I. Neuman, P. J. González, C. D. Brondino, Eur. J. Inorg. Chem. 2016, 2016, 192–207.
- 32M. Ishaque Khan, S. Ayesh, R. J. Doedens, M. Yu, C. J. O'Connor, Chem. Commun. 2005, 4658.
- 33B. Dong, J. Peng, Y. Chen, Y. Kong, A. Tian, H. Liu, J. Sha, J. Mol. Struct. 2006, 788, 200–205.
- 34B. Dong, C. J. Gómez-García, J. Peng, S. Benmansour, J. Ma, Polyhedron 2007, 26, 1310–1316.
- 35L. Chen, F.-L. Jiang, N. Li, C.-F. Yan, W.-T. Xu, M.-C. Hong, Inorg. Chem. Commun. 2009, 12, 219–222.
- 36M. F. A. Santos, G. Sciortino, I. Correia, A. C. P. Fernandes, T. Santos-Silva, F. Pisanu, E. Garribba, J. Costa Pessoa, Chem. Eur. J. 2022, 28, e202200105.
- 37A. Müller, R. Sessoli, E. Krickemeyer, H. Bögge, J. Meyer, D. Gatteschi, L. Pardi, J. Westphal, K. Hovemeier, R. Rohlfing, J. Döring, F. Hellweg, C. Beugholt, M. Schmidtmann, Inorg. Chem. 1997, 36, 5239–5250.
- 38Y. Shan, S. D. Huang, Z. Kristallogr. New Cryst. Struct. 1999, 214, 383–386.
- 39A. Müller, J. Doring, H. Bögge, E. Krickemeyer, Chimia 1988, 42, 300–301.
- 40Y. Xu, L.-B. Nie, D. Zhu, Y. Song, G.-P. Zhou, W.-S. You, Cryst. Growth Des. 2007, 7, 925–929.
- 41T. Yamase, M. Suzuki, K. Ohtaka, J. Chem. Soc. Dalton Trans. 1997, 2463–2472.
- 42X. Fang, P. Kögerler, L. Isaacs, S. Uchida, N. Mizuno, J. Am. Chem. Soc. 2009, 131, 432–433.
- 43K. Johnson, Garrett, E. O. Schlemper, J. Am. Chem. Soc. 1978, 3645–3646.
- 44Y. Koyama, Y. Hayashi, K. Isobe, Chem. Lett. 2008, 37, 578–579.
- 45K. Domae, D. Uchimura, Y. Koyama, S. Inami, Y. Hayashi, K. Isobe, H. Kameda, T. Shimoda, Pure Appl. Chem. 2009, 81, 1323–1330.
- 46M. I. Khan, E. Yohannes, R. J. Doedens, Angew. Chem. Int. Ed. 1999, 38, 1292–1294.
10.1002/(SICI)1521-3773(19990503)38:9<1292::AID-ANIE1292>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 47D. Altermatt, I. D. Brown, Acta Crystallogr. Sect. B 1985, 41, 240–244.
- 48A. Müller, E. Krickemeyer, M. Penk, H. Walberg, H. Bögge, Angew. Chem. Int. Ed. Engl. 1987, 26, 1045–1046.
- 49C.-D. Zhang, S.-X. Liu, B. Gao, C.-Y. Sun, L.-H. Xie, M. Yu, J. Peng, Polyhedron 2007, 26, 1514–1522.
- 50H. N. Miras, R. G. Raptis, N. Lalioti, M. P. Sigalas, P. Baran, T. A. Kabanos, Chem. Eur. J. 2005, 11, 2295–2306.
- 51Y. Hayashi, N. Miyakoshi, T. Shinguchi, A. Uehara, Chem. Lett. 2001, 30, 170–171.
- 52S.-Y. Shi, Y. Chen, B. Liu, Y.-K. Lu, J.-N. Xu, X.-B. Cui, J.-Q. Xu, J. Coord. Chem. 2009, 62, 2937–2948.
- 53J. Zhou, X. Liu, F. Hu, R. Chen, H. Zou, W. Fu, G. Liang, Y. Chen, CrystEngComm 2013, 15, 4593.
- 54D. H. Kita, G. A. De Andrade, J. M. Missina, K. Postal, V. K. Boell, F. S. Santana, I. F. Zattoni, I. D. S. Zanzarini, V. R. Moure, F. G. D. M. Rego, G. Picheth, E. M. De Souza, D. A. Mitchell, S. V. Ambudkar, G. G. Nunes, G. Valdameri, FEBS Lett. 2022, 596, 381–399.
- 55D. Althumairy, K. Postal, B. G. Barisas, G. G. Nunes, D. A. Roess, D. C. Crans, Metallomics 2020, 12, 1044–1061.
- 56T. Tiago, M. Aureliano, J. J. G. Moura, J. Inorg. Biochem. 2004, 98, 1902–1910.
- 57S. Ramos, J. J. G. Moura, M. Aureliano, Metallomics 2012, 4, 16–22.
- 58G. Fraqueza, L. A. E. Batista De Carvalho, M. P. M. Marques, L. Maia, C. A. Ohlin, W. H. Casey, M. Aureliano, Dalton Trans. 2012, 41, 12749.
- 59M. P. M. Marques, D. Gianolio, S. Ramos, L. A. E. Batista De Carvalho, M. Aureliano, Inorg. Chem. 2017, 56, 10893–10903.
- 60S. Ramos, M. Manuel, T. Tiago, R. Duarte, J. Martins, C. Gutiérrez-Merino, J. J. G. Moura, M. Aureliano, J. Inorg. Biochem. 2006, 100, 1734–1743.
- 61H. Schmidt, I. Andersson, D. Rehder, L. Pettersson, Chem. Eur. J. 2001, 7, 251–257.
10.1002/1521-3765(20010105)7:1<251::AID-CHEM251>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 62M. Aureliano, Oxid. Med. Cell. Long. 2016, 2016, 1–8.
- 63S. S. Soares, C. Gutiérrez-Merino, M. Aureliano, Aquatic Toxicology 2007, 83, 1–9.
- 64S. S. Soares, H. Martins, C. Gutiérrez-Merino, M. Aureliano, Comp. Biochem. Physiol. Part C 2008, 147, 168–178.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.