Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO2 Reduction
Wenqian Yang
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
These authors contributed equally to this work.
Search for more papers by this authorQijie Mo
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Qi-Ting He
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiang-Ping Li
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorProf. Dr. Ziqian Xue
School of Advanced Energy, Sun Yat-Sen University, 518107 Shenzhen, China
Search for more papers by this authorDr. Yu-Lin Lu
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorJie Chen
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorKai Zheng
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorYanan Fan
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guangqin Li
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Cheng-Yong Su
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorWenqian Yang
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
These authors contributed equally to this work.
Search for more papers by this authorQijie Mo
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Qi-Ting He
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiang-Ping Li
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorProf. Dr. Ziqian Xue
School of Advanced Energy, Sun Yat-Sen University, 518107 Shenzhen, China
Search for more papers by this authorDr. Yu-Lin Lu
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorJie Chen
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorKai Zheng
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorYanan Fan
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guangqin Li
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Cheng-Yong Su
MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
Search for more papers by this authorAbstract
How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X=NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1 % (acidic), 94.1 % (neutral) and 95.3 % (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C−H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host–guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202406564-sup-0001-Dynamic_simulations_of_CO2.mp45.6 MB | Supporting Information |
ange202406564-sup-0001-misc_information.pdf4.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610–7672;
- 1bY. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc. 2019, 141, 7646–7659;
- 1cD. Gao, R. M. Arán-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal. 2019, 2, 198–210;
- 1dD. Yang, B. Ni, X. Wang, Adv. Energy Mater. 2020, 10, 2001142;
- 1eJ. D. Yi, D. H. Si, R. Xie, Q. Yin, M. D. Zhang, Q. Wu, G. L. Chai, Y. B. Huang, R. Cao, Angew. Chem. Int. Ed. 2021, 60, 17108–17114;
- 1fY. Wu, C. Chen, X. Yan, X. Sun, Q. Zhu, P. Li, Y. Li, S. Liu, J. Ma, Y. Huang, B. Han, Angew. Chem. Int. Ed. 2021, 60, 20803–20810;
- 1gS. Jin, Z. Hao, K. Zhang, Z. Yan, J. Chen, Angew. Chem. Int. Ed. 2021, 60, 20627–20648;
- 1hJ. Jin, J. Wicks, Q. Min, J. Li, Y. Hu, J. Ma, Y. Wang, Z. Jiang, Y. Xu, R. Lu, G. Si, P. Papangelakis, M. Shakouri, Q. Xiao, P. Ou, X. Wang, Z. Chen, W. Zhang, K. Yu, J. Song, X. Jiang, P. Qiu, Y. Lou, D. Wu, Y. Mao, A. Ozden, C. Wang, B. Y. Xia, X. Hu, V. P. Dravid, Y.-M. Yiu, T.-K. Sham, Z. Wang, D. Sinton, L. Mai, E. H. Sargent, Y. Pang, Nature 2023, 617, 724–729;
- 1iM. Luo, Z. Wang, Y. C. Li, J. Li, F. Li, Y. Lum, D. H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C. T. Dinh, Y. Wang, Y. Wang, D. Sinton, E. H. Sargent, Nat. Commun. 2019, 10, 5814.
- 2
- 2aB. Chen, B. Li, Z. Tian, W. Liu, W. Liu, W. Sun, K. Wang, L. Chen, J. Jiang, Adv. Energy Mater. 2021, 11, 2102152;
- 2bX. Liu, C. Liu, X. Song, X. Ding, H. Wang, B. Yu, H. Liu, B. Han, X. Li, J. Jiang, Chem. Sci. 2023, 14, 9086–9094;
- 2cZ. Jiang, M. Zhang, X. Chen, B. Wang, W. Fan, C. Yang, X. Yang, Z. Zhang, X. Yang, C. Li, T. Zhou, Angew. Chem. Int. Ed. 2023, 62, e202311223;
- 2dB. Chen, L. Gong, N. Li, H. Pan, Y. Liu, K. Wang, J. Jiang, Adv. Funct. Mater. 2023, 34, 2310029;
- 2eX. Fu, P. Zhang, T. Sun, L. Xu, L. Gong, B. Chen, Q. Xu, T. Zheng, Z. Yu, X. Chen, S. Zhang, M. Hou, H. Wang, K. Wang, J. Jiang, Small 2022, 18, e2107997;
- 2fW. Liu, K. Wang, L. Gong, Q. Zhi, R. Jiang, W. Liu, T. Sun, Y. Zhang, J. Jiang, Chem. Eng. J. 2022, 431, 134269.
- 3
- 3aJ. Chen, K. Shen, Y. Li, ChemSusChem 2017, 10, 3165–3187;
- 3bS. Chen, D. Ji, Q. Chen, J. Ma, S. Hou, J. Zhang, Nat. Commun. 2023, 14, 3526;
- 3cS. Dissegna, K. Epp, W. R. Heinz, G. Kieslich, R. A. Fischer, Adv. Mater. 2018, 30, 1704501;
- 3dZ. Ji, H. Wang, S. Canossa, S. Wuttke, O. M. Yaghi, Adv. Funct. Mater. 2020, 30, 2000238;
- 3eM. Liu, Y.-Q. Zhang, X. Wang, F. Lang, N. Li, X.-H. Bu, Sci. China Chem. 2023, 66, 2754–2779;
- 3fZ. Liu, X. Lv, S. Kong, M. Liu, K. Liu, J. Zhang, B. Wu, Q. Zhang, Y. Tang, L. Qian, L. Zhang, G. Zheng, Angew. Chem. Int. Ed. 2023, 62, e202309319;
- 3gR. Qin, K. Liu, Q. Wu, N. Zheng, Chem. Rev. 2020, 120, 11810–11899;
- 3hD. J. Xiao, E. D. Bloch, J. A. Mason, W. L. Queen, M. R. Hudson, N. Planas, J. Borycz, A. L. Dzubak, P. Verma, K. Lee, F. Bonino, V. Crocellà, J. Yano, S. Bordiga, D. G. Truhlar, L. Gagliardi, C. M. Brown, J. R. Long, Nat. Chem. 2014, 6, 590–595;
- 3iS. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 1–9.
- 4
- 4aL. Qin, C. Ma, J. Zhang, T. Zhou, Adv. Funct. Mater. 2024, 2401562;
- 4bY. Sun, J. Wei, Z. Fu, M. Zhang, S. Zhao, G. Xu, C. Li, J. Zhang, T. Zhou, Adv. Mater. 2022, 35, 2208625;
- 4cY. Xu, Y. Ren, G. Zhou, S. Feng, Z. Yang, S. Dai, Z. Lu, T. Zhou, Adv. Funct. Mater. 2024, 34, 2313695.
- 5
- 5aR. Shimoni, Z. Shi, S. Binyamin, Y. Yang, I. Liberman, R. Ifraemov, S. Mukhopadhyay, L. Zhang, I. Hod, Angew. Chem. Int. Ed. 2022, 61, e202206085;
- 5bN. Sikdar, J. R. C. Junqueira, S. Dieckhöfer, T. Quast, M. Braun, Y. Song, H. B. Aiyappa, S. Seisel, J. Weidner, D. Öhl, C. Andronescu, W. Schuhmann, Angew. Chem. Int. Ed. 2021, 60, 23427–23434;
- 5cJ. Wang, K. Sun, D. Wang, X. Niu, Z. Lin, S. Wang, W. Yang, J. Huang, H.-L. Jiang, ACS Catal. 2023, 13, 8760–8769;
- 5dR. Wang, J. Liu, Q. Huang, L. Z. Dong, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2021, 60, 19829–19835;
- 5eW. Wang, D. Chen, F. Li, X. Xiao, Q. Xu, Chem 2024, 10, 86–133;
- 5fK. Yang, Y. Sun, S. Chen, M. Li, M. Zheng, L. Ma, W. Fan, Y. Zheng, Q. Li, J. Duan, Small 2023, 19, e2301536;
- 5gY. Zhang, Q. Zhou, Z. F. Qiu, X. Y. Zhang, J. Q. Chen, Y. Zhao, F. Gong, W. Y. Sun, Adv. Funct. Mater. 2022, 32, 2203677;
- 5hH.-L. Zhu, H.-Y. Chen, Y.-X. Han, Z.-H. Zhao, P.-Q. Liao, X.-M. Chen, J. Am. Chem. Soc. 2022, 144, 13319–13326;
- 5iJ. Qi, Y. P. Lin, D. Chen, T. Zhou, W. Zhang, R. Cao, Angew. Chem. Int. Ed. 2020, 59, 8917–8921.
- 6
- 6aC. He, Y.-H. Zou, D.-H. Si, Z.-A. Chen, T.-F. Liu, R. Cao, Y.-B. Huang, Nat. Commun. 2023, 14, 3317;
- 6bI. Jahović, Y. Yang, T. K. Ronson, J. R. Nitschke, Angew. Chem. Int. Ed. 2023, 62, e202309589;
- 6cG.-L. Li, Z. Zhuo, B. Wang, X.-L. Cao, H.-F. Su, W. Wang, Y.-G. Huang, M. Hong, J. Am. Chem. Soc. 2021, 143, 10920–10929;
- 6dJ. N. Lu, J. J. Liu, L. Z. Dong, J. M. Lin, F. Yu, J. Liu, Y. Q. Lan, Angew. Chem. Int. Ed. 2023, 62, e202308505;
- 6eD. Luo, Z. J. Yuan, L. J. Ping, X. W. Zhu, J. Zheng, C. W. Zhou, X. C. Zhou, X. P. Zhou, D. Li, Angew. Chem. Int. Ed. 2023, 62, e202216977;
- 6fY. Yang, T. K. Ronson, D. Hou, J. Zheng, I. Jahović, K. H. Luo, J. R. Nitschke, J. Am. Chem. Soc. 2023, 145, 19164–19170;
- 6gJ. Zheng, Z. Lu, K. Wu, G.-H. Ning, D. Li, Chem. Rev. 2020, 120, 9675–9742;
- 6hY. Li, H. Jiang, W. Zhang, X. Zhao, M. Sun, Y. Cui, Y. Liu, J. Am. Chem. Soc. 2024, 146, 3147–3159.
- 7G. Wang, Y. Yang, H. Liu, M. Chen, Z. Jiang, Q. Bai, J. Yuan, Z. Jiang, Y. Li, P. Wang, Angew. Chem. Int. Ed. 2022, 61, e202205851.
- 8
- 8aL. Huang, Z. Liu, G. Gao, C. Chen, Y. Xue, J. Zhao, Q. Lei, M. Jin, C. Zhu, Y. Han, J. S. Francisco, X. Lu, J. Am. Chem. Soc. 2023, 145, 26444–26451;
- 8bY. F. Lu, L. Z. Dong, J. Liu, R. X. Yang, J. J. Liu, Y. Zhang, L. Zhang, Y. R. Wang, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2021, 60, 26210–26217;
- 8cD. Sengupta, P. Melix, S. Bose, J. Duncan, X. Wang, M. R. Mian, K. O. Kirlikovali, F. Joodaki, T. Islamoglu, T. Yildirim, R. Q. Snurr, O. K. Farha, J. Am. Chem. Soc. 2023, 145, 20492–20502;
- 8dZ. Xue, J. J. Zheng, Y. Nishiyama, M. S. Yao, Y. Aoyama, Z. Fan, P. Wang, T. Kajiwara, Y. Kubota, S. Horike, K. i Otake, S. Kitagawa, Angew. Chem. Int. Ed. 2022, 62, e202215234;
- 8eS. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H. C. Zhou, Adv. Mater. 2018, 30, 1704303;
- 8fX.-W. Zhu, D. Luo, X.-P. Zhou, D. Li, Coord. Chem. Rev. 2022, 455, 214354;
- 8gL. L. Zhuo, P. Chen, K. Zheng, X. W. Zhang, J. X. Wu, D. Y. Lin, S. Y. Liu, Z. S. Wang, J. Y. Liu, D. D. Zhou, J. P. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202204967;
- 8hH. X. Zhang, Q. L. Hong, J. Li, F. Wang, X. Huang, S. Chen, W. Tu, D. Yu, R. Xu, T. Zhou, J. Zhang, Angew. Chem. Int. Ed. 2019, 58, 11752–11756.
- 9
- 9aQ. T. He, X. P. Li, Y. Liu, Z. Q. Yu, W. Wang, C. Y. Su, Angew. Chem. Int. Ed. 2009, 48, 6156–6159;
- 9bQ.-T. He, X.-P. Li, L.-F. Chen, L. Zhang, W. Wang, C.-Y. Su, ACS Catal. 2012, 3, 1–9.
- 10S. Hiraoka, T. Yi, M. Shiro, M. Shionoya, J. Am. Chem. Soc. 2002, 124, 14510–14511.
- 11Deposition numbers 2306826 (for Ag-MOC-NO3), 2306825 (for Ag-MOC-ClO4) and 2306824 (for Ag-MOC-BF4) contain the supplementary crystallographic data for this paper.
- 12
- 12aX.-y. Fan, H. Guo, J.-h. Lv, K. Yu, Z.-h. Su, L. Wang, C.-m. Wang, B.-b. Zhou, Dalton Trans. 2018, 47, 4273–4281;
- 12bX. P. Li, J. Y. Zhang, M. Pan, S. R. Zheng, Y. Liu, C. Y. Su, Inorg. Chem. 2007, 46, 4617–4625;
- 12cP. Meng, A. Brock, Y. Xu, C. Han, S. Chen, C. Yan, J. McMurtrie, J. Xu, J. Am. Chem. Soc. 2019, 142, 479–486.
- 13
- 13aY. Wang, H. Yang, X. Sun, H. Zhang, T. Xian, Mater. Res. Bull. 2020, 124, 110754;
- 13bY. Zou, T. Zhan, Y. Yang, Z. Fan, Y. Li, Y. Zhang, X. Ma, Q. Chen, S. Xiang, Z. Zhang, J. Mater. Chem. A 2022, 10, 3216–3225.
- 14
- 14aZ. Wang, Y. Zhou, C. Xia, W. Guo, B. You, B. Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 19107–19112;
- 14bY. Zou, T. Pan, Z. Fan, Y. Li, H. Zhang, Y. Ju, Y. Zhang, X. Ma, Q. Chen, S. Xiang, Z. Zhang, Chem. Eng. J. 2023, 454, 140496.
- 15P. Lu, D. Gao, H. He, Q. Wang, Z. Liu, S. Dipazir, M. Yuan, W. Zu, G. Zhang, Nanoscale 2019, 11, 7805–7812.
- 16
- 16aC. Chen, Y. Li, P. Yang, Joule 2021, 5, 737–742;
- 16bL. Zhang, J. Feng, S. Liu, X. Tan, L. Wu, S. Jia, L. Xu, X. Ma, X. Song, J. Ma, X. Sun, B. Han, Adv. Mater. 2023, 35, 2209590.
- 17
- 17aS.-Y. Chi, Q. Chen, S.-S. Zhao, D.-H. Si, Q.-J. Wu, Y.-B. Huang, R. Cao, J. Mater. Chem. A 2022, 10, 4653–4659;
- 17bJ. D. Yi, R. Xie, Z. L. Xie, G. L. Chai, T. F. Liu, R. P. Chen, Y. B. Huang, R. Cao, Angew. Chem. Int. Ed. 2020, 59, 23641–23648.
- 18
- 18aJ. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, WIREs Comput. Mol. Sci. 2014, 4, 15–25.
- 19
- 19aB. Huang, L. Xiao, J. Lu, L. Zhuang, Angew. Chem. Int. Ed. 2016, 55, 6239–6243;
- 19bQ. Li, Y. Ouyang, S. Lu, X. Bai, Y. Zhang, L. Shi, C. Ling, J. Wang, Chem. Commun. 2020, 56, 9937–9949.
- 20
- 20aD. Chen, L. H. Zhang, J. Du, H. Wang, J. Guo, J. Zhan, F. Li, F. Yu, Angew. Chem. Int. Ed. 2021, 60, 24022–24027;
- 20bX.-F. Qiu, H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, J. Am. Chem. Soc. 2021, 143, 7242–7246.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.