Stable Lithium Oxygen Batteries Enabled by Solvent-diluent Interaction in N,N-dimethylacetamide-based Electrolytes
Dong-Yue Yang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
These authors contributed equally to this work.
Contribution: Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorJia-Yi Du
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
These authors contributed equally to this work.
Contribution: Methodology (lead), Software (lead), Writing - original draft (equal)
Search for more papers by this authorYue Yu
Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2 L 3G1 Canada.
These authors contributed equally to this work.
Search for more papers by this authorYing-Qi Fan
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
Search for more papers by this authorProf. Gang Huang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
Search for more papers by this authorCorresponding Author
Prof. Xin-Bo Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
Search for more papers by this authorCorresponding Author
Prof. Hong-Jie Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
Search for more papers by this authorDong-Yue Yang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
These authors contributed equally to this work.
Contribution: Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorJia-Yi Du
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
These authors contributed equally to this work.
Contribution: Methodology (lead), Software (lead), Writing - original draft (equal)
Search for more papers by this authorYue Yu
Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2 L 3G1 Canada.
These authors contributed equally to this work.
Search for more papers by this authorYing-Qi Fan
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
Search for more papers by this authorProf. Gang Huang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
Search for more papers by this authorCorresponding Author
Prof. Xin-Bo Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
Search for more papers by this authorCorresponding Author
Prof. Hong-Jie Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China.
Search for more papers by this authorAbstract
In the pursuit of next-generation ultrahigh-energy-density Li−O2 batteries, it is imperative to develop an electrolyte with stability against the strong oxidation environments. N,N-dimethylacetamide (DMA) is a recognized solvent known for its robust resistance to the highly reactive reduced oxygen species, yet its application in Li−O2 batteries has been constrained due to its poor compatibility with the Li metal anode. In this study, a rationally selected hydrofluoroether diluent, methyl nonafluorobutyl ether (M3), has been introduced into the DMA-based electrolyte to construct a localized high concentration electrolyte. The stable −CH3 and C−F bonds within the M3 structure could not only augment the fundamental properties of the electrolyte but also fortify its resilience against attacks from O2− and 1O2. Additionally, the strong electron-withdrawing groups (−F) presented in the M3 diluent could facilitate coordination with the electron-donating groups (−CH3) in the DMA solvent. This intermolecular interaction promotes more alignments of Li+-anions with a small amount of M3 addition, leading to the construction of an anion-derived inorganic-rich SEI that enhances the stability of the Li anode. As a result, the Li−O2 batteries with the DMA/M3 electrolyte exhibit superior cycling performance at both 30 °C (359th) and −10 °C (120th).
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202403432-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. K. Zhang, X. Q. Zhang, J. Wan, N. Yao, T. L. Song, J. Xie, L. P. Hou, M. Y. Zhou, X. Chen, B. Q. Li, R. Wen, H. J. Peng, Q. Zhang, J. Q. Huang, Nat. Energy 2023, 8, 725–735.
- 2Z. Z. Wu, Y. H. Tian, H. Chen, L. G. Wang, S. S. Qian, T. P. Wu, S. Q. Zhang, J. Lu, Chem. Soc. Rev. 2022, 51, 8045–8101.
- 3M. Li, C. S. Wang, Z. W. Chen, K. Xu, J. Lu, Chem. Rev. 2020, 120, 6783–6819.
- 4J. N. Lai, Y. Xing, N. Chen, L. Li, F. Wu, R. J. Chen, Angew. Chem. Int. Ed. 2020, 59, 2974–2997.
- 5S. A. Freunberger, Y. H. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé, P. G. Bruce, Angew. Chem. Int. Ed. 2011, 50, 8609–8613.
- 6Z. M. Huang, H. P. Zeng, M. L. Xie, X. Lin, Z. M. Huang, Y. Shen, Y. H. Huang, Angew. Chem. Int. Ed. 2019, 58, 2345–2349.
- 7D. Sharon, M. Afri, M. Noked, A. Garsuch, A. A. Frimer, D. Aurbach, J. Phys. Chem. Lett. 2013, 4, 3115–3119.
- 8W. Walker, V. Giordani, J. Uddin, V. S. Bryantsev, G. V. Chase, D. Addison, J. Am. Chem. Soc. 2013, 135, 2076–2079.
- 9Y. Yu, G. Huang, J.-Y. Du, J.-Z. Wang, Y. Wang, Z.-J. Wu, X.-B. Zhang, Energy Environ. Sci. 2020, 13, 3075–3081.
- 10C. L. Li, G. Huang, Y. Yu, Q. Xiong, J. M. Yan, X. B. Zhang, J. Am. Chem. Soc. 2022, 144, 5827–5833.
- 11S. R. Chen, J. M. Zheng, L. Yu, X. D. Ren, M. H. Engelhard, C. J. Niu, H. Lee, W. Xu, J. Xiao, J. Liu, J. G. Zhang, Joule 2018, 2, 1548–1558.
- 12X. L. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. D. Han, J. Yue, N. Piao, R. X. Wang, X. Q. Zhou, X. Z. Xiao, L. X. Chen, C. S. Wang, Nat. Energy 2019, 4, 882–890.
- 13X. D. Ren, S. R. Chen, H. Lee, D. H. Mei, M. H. Engelhard, S. D. Burton, W. G. Zhao, J. M. Zheng, Q. Y. Li, M. S. Ding, M. Schroeder, J. Alvarado, K. Xu, Y. S. Meng, J. Liu, J. G. Zhang, W. Xu, Chem 2018, 4, 1877–1892.
- 14C. M. Efaw, Q. Wu, N. Gao, Y. Zhang, H. Zhu, K. Gering, M. F. Hurley, H. Xiong, E. Hu, X. Cao, W. Xu, J.-G. Zhang, E. J. Dufek, J. Xiao, X.-Q. Yang, J. Liu, Y. Qi, B. Li, Nat. Mater. 2023, 22, 1531–1539.
- 15X. Yang, B. Zhang, Y. Tian, Y. Wang, Z. Q. Fu, D. Zhou, H. Liu, F. Y. Kang, B. H. Li, C. S. Wang, G. X. Wang, Nat. Commun. 2023, 14, 925.
- 16X. D. Ren, L. F. Zou, X. Cao, M. H. Engelhard, W. Liu, S. D. Burton, H. Lee, C. J. Niu, B. E. Matthews, Z. H. Zhu, C. M. Wang, B. W. Arey, J. Xiao, J. Liu, J. G. Zhang, W. Xu, Joule 2019, 3, 1662–1676.
- 17W. J. Kwak, H. S. Lim, P. Gao, R. Feng, S. Chae, L. Zhong, J. Read, M. H. Engelhard, W. Xu, J. G. Zhang, Adv. Funct. Mater. 2020, 31, 2002927.
- 18H. H. Liang, Z. Ma, Y. Q. Wang, F. Zhao, Z. Cao, L. Cavallo, Q. Li, J. Ming, ACS Nano 2023, 17, 18062–18073.
- 19A. Sagadevan, K. C. Hwang, M. D. Su, Nat. Commun. 2017, 8, 1812.
- 20Y. G. Zou, Z. Ma, G. Liu, Q. Li, D. M. Yin, X. J. Shi, Z. Cao, Z. N. Tian, H. Kim, Y. J. Guo, C. S. Sun, L. Cavallo, L. M. Wang, H. N. Alshareef, Y. K. Sun, J. Ming, Angew. Chem. Int. Ed. 2023, 62, e202216189.
- 21Q. Zhao, Y. H. Zhang, G. R. Sun, L. N. Cong, L. Q. Sun, H. M. Xie, J. Liu, ACS Appl. Mater. Interfaces 2018, 10, 26312–26319.
- 22S. A. Freunberger, Y. H. Chen, Z. Q. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák, P. G. Bruce, J. Am. Chem. Soc. 2011, 133, 8040–8047.
- 23W.-J. Kwak, S. Chae, R. Feng, P. Gao, J. Read, M. H. Engelhard, L. Zhong, W. Xu, J.-G. Zhang, ACS Energy Lett. 2020, 5, 2182–2190.
- 24W. J. Kwak, H. Kim, Y. K. Petit, C. Leypold, T. T. Nguyen, N. Mahne, P. Redfern, L. A. Curtiss, H. G. Jung, S. M. Borisov, S. A. Freunberger, Y. K. Sun, Nat. Commun. 2019, 10, 1380.
- 25Y. Umebayashi, K. Matsumoto, M. Watanabe, K. Katoh, S.-i. Ishiguro, Anal. Sci. 2001, 17, 323–326.
- 26L. Wang, K. Uosaki, H. Noguchi, J. Phys. Chem. C 2020, 124, 12381–12389.
- 27X. Zhang, S. Wang, C. J. Xue, C. Z. Xin, Y. H. Lin, Y. Shen, L. L. Li, C. W. Nan, Adv. Mater. 2019, 31, e1806082.
- 28C. X. Chu, N. N. Wang, L. L. Li, L. D. Lin, F. Tian, Y. L. Li, J. Yang, S. X. Dou, Y. T. Qian, Energy Storage Mater. 2019, 23, 137–143.
- 29J. Lopez, A. Pei, J. Y. Oh, G. J. N. Wang, Y. Cui, Z. A. Bao, J. Am. Chem. Soc. 2018, 140, 11735–11744.
- 30L. L. Jiang, C. Yan, Y. X. Yao, W. Cai, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2020, 60, 3402–3406.
- 31X. Q. Zhang, T. Li, B. Q. Li, R. Zhang, P. Shi, C. Yan, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 3252–3257.
- 32E. J. Yoo, H. S. Zhou, ACS Appl. Mater. Interfaces 2020, 12, 18490–18495.
- 33Y. Kim, D. Koo, S. Ha, S. C. Jun, T. Yim, H. Kim, S. K. Oh, D. M. Kim, A. Choi, Y. Kang, K. H. Ryu, M. Jang, Y. K. Han, S. M. Oh, K. T. Lee, ACS Nano 2018, 12, 4419–4430.
- 34H. D. Lim, Y. S. Yun, Y. Ko, Y. Bae, M. Y. Song, H. J. Yoon, K. Kang, H. J. Jin, Carbon 2017, 118, 114–119.
- 35F. Lepoivre, A. Grimaud, D. Larcher, J.-M. Tarascon, J. Electrochem. Soc. 2016, 163, A923–A929.
- 36S. Choudhury, C. T. C. Wan, W. I. Al Sadat, Z. Y. Tu, S. Lau, M. J. Zachman, L. F. Kourkoutis, L. A. Archer, Sci. Adv. 2017, 3, e1602809.
- 37K. Chen, G. Huang, J. L. Ma, J. Wang, D. Y. Yang, X. Y. Yang, Y. Yu, X. B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 16661–16667.
- 38Y. Qiao, S. C. Wu, J. Yi, Y. Sun, S. H. Guo, S. X. Yang, P. He, H. S. Zhou, Angew. Chem. Int. Ed. 2017, 56, 4960–4964.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.