α-Difluoroalkylation of Benzyl Amines with Trifluoromethylarenes
Wen-Jun Yue
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel⋅lí Domingo, 1, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Prof. Ruben Martin
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010 Barcelona, Spain
Search for more papers by this authorWen-Jun Yue
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel⋅lí Domingo, 1, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Prof. Ruben Martin
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010 Barcelona, Spain
Search for more papers by this authorAbstract
An α-difluoroalkylation of benzyl amines with trifluoromethylarenes is disclosed herein. This protocol is characterized by its operational simplicity, excellent chemoselectivity and broad scope—even with advanced synthetic intermediates—, thus offering a new entry point to medicinally-relevant α-difluoroalkylated amines from simple, yet readily accessible, precursors.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202310304-sup-0001-misc_information.pdf20.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Wang, M. Sánchez-Roselló, J. L. Aceña, C. Del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432;
- 1bS. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320;
- 1cI. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, Wiley, Blackwell, 2009;
10.1002/9781444312096 Google Scholar
- 1dY. Wang, R. Callejo, A. M. Z. Slawin, D. O'Hagan, Beilstein J. Org. Chem. 2014, 10, 18.
- 2For selected reviews:
- 2aD. R. Carvalho, A. H. Christian, Org. Biomol. Chem. 2021, 19, 947;
- 2bC. Ni, L. Zhu, J. Hu, Acta Chim. Sin. 2015, 73, 90;
- 2cZ. Feng, Y.-L. Xiao, X. Zhang, Acc. Chem. Res. 2018, 51, 2264.
- 3For selected references:
- 3aQ. Zhou, A. Ruffoni, R. Gianatas-sio, Y. Fujiwara, E. Sella, D. Shabat, P. S. Baran, Angew. Chem. Int. Ed. 2013, 52, 3949;
- 3bB. Chen, D. A. Vicic, Top. Organomet. Chem. 2014, 52, 113;
- 3cR. R. Merchant, et al. Science 2018, 360, 75;
- 3dW. Miao, Y. Zhao, C. Ni, B. Gao, W. Zhang, J. Hu, J. Am. Chem. Soc. 2018, 140, 880;
- 3eW.-J. Yue, C. S. Day, A. J. Brenes Rucinski, R. Martin, Org. Lett. 2022, 24, 5109;
- 3fP. Biallas, K. Yamazaki, D. J. Dixon, Org. Lett. 2022, 24, 2002;
- 3gJ. B. I. Sap, C. F. Meyer, N. J. W. Straathof, N. Iwumene, C. W. AmEnde, A. A. Trabanco, V. Gouverneur, Chem. Soc. Rev. 2021, 50, 8214.
- 4For selected reviews:
- 4aT. T. Simur, T. Ye, Y.-J. Yu, F.-L. Zhang, Y.-F. Wang, Chin. Chem. Lett. 2022, 33, 1193;
- 4bF. Jaroschik, Chem. Eur. J. 2018, 24, 14572.
- 5For selected references about hydrodefluorination:
- 5aH. Iwamoto, H. Imiya, M. Ohashi, S. Ogoshi, J. Am. Chem. Soc. 2020, 142, 19360;
- 5bJ. B. I. Sap, N. J. W. Straathof, T. Knauber, C. F. Meyer, M. Medebielle, L. Buglioni, C. Genicot, A. A. Trabanco, T. Noel, C. W. Am Ende, V. Gouverneur, J. Am. Chem. Soc. 2020, 142, 9181;
- 5cJ. R. Box, M. E. Avanthay, D. L. Poole, A. Lennox, Angew. Chem. Int. Ed. 2023, 62, No. e202218195.
- 6For selected references about cross-coupling with organo-metallics:
- 6aS. Yoshida, K. Shimomori, Y. Kim, T. Hosoya, Angew. Chem. Int. Ed. 2016, 55, 10406;
- 6bC. Luo, J. S. Bandar, J. Am. Chem. Soc. 2019, 141, 14120;
- 6cS. E. Wright, J. S. Bandar, J. Am. Chem. Soc. 2022, 144, 13032;
- 6dY. C. Luo, F. F. Tong, Y. Zhang, C. Y. He, X. Zhang, J. Am. Chem. Soc. 2021, 143, 13971.
- 7For selected references about olefin functionalization:
- 7aK. Chen, N. Berg, R. Gschwind, B. König, J. Am. Chem. Soc. 2017, 139, 18444;
- 7bH. Wang, N. T. Jui, J. Am. Chem. Soc. 2018, 140, 163;
- 7cD. B. Vogt, C. P. Seath, H. Wang, N. T. Jui, J. Am. Chem. Soc. 2019, 141, 13203;
- 7dC. Liu, N. Shen, R. Shang, Nat. Commun. 2022, 13, 354;
- 7eC. Liu, K. Li, R. Shang, ACS Catal. 2022, 12, 4103;
- 7fJ. Wang, Y. Wang, Y. Liang, L. Zhou, L. Liu, Z. Zhang, Angew. Chem. Int. Ed. 2023, 62, No. e202215062.
- 8For other types of transformation of trifluoromethyl arenes, see:
- 8aD. Mandal, R. Gupta, R. D. Young, J. Am. Chem. Soc. 2018, 140, 10682;
- 8bD. Mandal, R. Gupta, A. K. Jaiswal, R. D. Young, J. Am. Chem. Soc. 2020, 142, 2572;
- 8cF. Y. Zhou, L. Jiao, Angew. Chem. Int. Ed. 2022, 61, No. e202201102;
- 8dS. T. Shreiber, A. Granados, B. Matsuo, J. Majhi, M. W. Campbell, S. Patel, G. A. Molander, Org. Lett. 2022, 24, 8542;
- 8eS.-S. Yan, S.-H. Liu, L. Chen, Z.-Y. Bo, K. Jing, T.-Y. Gao, B. Yu, Y. Lan, S.-P. Luo, D.-G. Yu, Chem 2021, 7, 3099;
- 8fS. Khanapur, K. Lye, D. Mandal, X. J. Wee, E. G. Robins, R. D. Young, Angew. Chem. Int. Ed. 2022, 61, No. e202210917;
- 8gJ. Xu, J.-W. Liu, R. Wang, J. Yang, K.-K. Zhao, H.-J. Xu, ACS Catal. 2023, 13, 7339;
- 8hC. M. Hendy, C. J. Pratt, N. T. Jui, S. B. Blakey, Org. Lett. 2023, 25, 1397.
- 9For selected references about defluorination of other types of trifluoromethyl compounds:
- 9aY.-J. Yu, F.-L. Zhang, T.-Y. Peng, C.-L. Wang, J. Cheng, C. Chen, K. N. Houk, Y.-F. Wang, Science 2021, 371, 1232;
- 9bM. W. Campbell, V. C. Polites, S. Patel, J. E. Lipson, J. Majhi, G. A. Molander, J. Am. Chem. Soc. 2021, 143, 19648;
- 9cJ. H. Ye, P. Bellotti, C. Heusel, F. Glorius, Angew. Chem. Int. Ed. 2022, 61, e202115456;
- 9dS. Ghosh, Z.-W. Qu, S. Pradhan, A. Ghosh, S. Grimme, I. Chatterjee, Angew. Chem. Int. Ed. 2022, 61, e202115272;
- 9eZ.-J. Shen, C. Zhu, X. Zhang, C. Yang, M. Rueping, L. Guo, W. J. Xia, Angew. Chem. Int. Ed. 2023, 62, e202217244.
- 10For selected references about defluorination of perfluoroalkyl arenes:
- 10aR. Doi, M. Yasuda, N. Kajita, K. Koh, M. Ogoshi, J. Am. Chem. Soc. 2023, 145, 11449;
- 10bN. Sugihara, K. Suzuki, Y. Nishimoto, M. Yasuda, J. Am. Chem. Soc. 2021, 143, 9308.
- 11For selected reviews on catalytic sp3 C−H functionalization:
- 11aJ. C. K. Chu, T. Rovis, Angew. Chem. Int. Ed. 2018, 57, 62;
- 11bK. R. Campos, Chem. Soc. Rev. 2007, 36, 1069;
- 11cD. Seidel, Acc. Chem. Res. 2015, 48, 317;
- 11dH. Li, B.-J. Li, Z.-J. Shi, Catal. Sci. Technol. 2011, 1, 191;
- 11eR. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreuter, O. Baudoin, Chem. Eur. J. 2010, 16, 2654;
- 11fJ. He, J. G. Hamann, H. M. L. Davies, R. E. J. Beckwith, Nat. Commun. 2015, 6, 5943.
- 12
- 12aA. Trowbridge, S. M. Walton, M. J. Gaunt, Chem. Rev. 2020, 120, 2613;
- 12bA. Koperniku, P. J. Foth, G. M. Sammis, L. L. Schafer, J. Am. Chem. Soc. 2019, 141, 18944;
- 12cT. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev. 2016, 45, 546;
- 12dB. Hong, T. Luo, X. Lei, ACS Cent. Sci. 2020, 6, 622.
- 13For a selection of α sp3 C−H functionalization of amines:
- 13aT. Ide, J. P. Barham, M. Fujita, Y. Kawato, H. Egami, Y. Hamashima, Chem. Sci. 2018, 9, 8453;
- 13bL. Leng, Y. Fu, P. Liu, J. M. Ready, J. Am. Chem. Soc. 2020, 142, 11972;
- 13cJ. Ye, I. Kalvet, F. Schoenebeck, T. Rovis, Nat. Chem. 2018, 10, 1037;
- 13dM. A. Ashley, C. Yamauchi, J. C. K. Chu, S. Otsuka, H. Yorimitsu, T. Rovis, Angew. Chem. Int. Ed. 2019, 58, 4002;
- 13eY. Shen, I. Funez-Ardoiz, F. Schoenebeck, T. Rovis, J. Am. Chem. Soc. 2021, 143, 18952.
- 14For selected reviews:
- 14aK. Nakajima, Y. Miyake, Y. Nishibayashi, Acc. Chem. Res. 2016, 49, 1946;
- 14bJ. A. Leitch, T. Rossolini, T. Rogova, J. A. P. Maitland, D. J. Dixon, ACS Catal. 2020, 10, 2009.
- 15J. A. Murphy, J. Org. Chem. 2014, 79, 3731.
- 16For selected references:
- 16aM. Li, O. Gutierrez, S. Berritt, A. Pascual-Escudero, A. Yesilcimen, X. Yang, J. Adrio, G. Huang, E. Nakamaru-Ogiso, M. C. Kozlowski, P. J. Walsh, Nat. Chem. 2017, 9, 997;
- 16bM. Wang, M. Poznik, M. Li, P. J. Walsh, J. J. Chruma, Adv. Synth. Catal. 2018, 360, 2854;
- 16cM. Li, S. Berritt, L. Matuszewski, G. Deng, A. Pascual-Escudero, G. B. Panetti, M. Poznik, X. Yang, J. J. Chruma, P. J. Walsh, J. Am. Chem. Soc. 2017, 139, 16327;
- 16dG. Deng, S. Duan, J. Wang, Z. Chen, T. Liu, W. Chen, H. Zhang, X. Yang, P. J. Walsh, Nat. Commun. 2021, 12, 386;
- 16eZ. Liu, M. Li, G. Deng, W. Wei, P. Feng, Q. Zi, T. Li, H. Zhang, X. Yang, P. J. Walsh, Chem. Sci. 2020, 11, 7619;
- 16fG. Deng, M. Li, K. Yu, C. Liu, Z. Liu, S. Duan, W. Chen, X. Yang, H. Zhang, P. J. Walsh, Angew. Chem. Int. Ed. 2019, 58, 2826;
- 16gG. B. Panetti, P. J. Carroll, M. R. Gau, B. C. Manor, E. J. Schelter, P. J. Walsh, Chem. Sci. 2021, 12, 4405.
- 17For selected references:
- 17aY. Shen, Y. Gu, R. Martin, J. Am. Chem. Soc. 2018, 140, 12200;
- 17bW.-J. Yue, C. S. Day, R. Martin, J. Am. Chem. Soc. 2021, 143, 6395;
- 17cA. W. Band, H. Yin, L. Xu, J. Giacoboni, R. Martin-Montero, C. Romano, J. Montgomery, R. Martin, ACS Catal. 2020, 10, 4671;
- 17dJ. Rodrigalvarez, H. Wang, R. Martin, J. Am. Chem. Soc. 2023, 145, 3869.
- 18
- 18aF. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752;
- 18bF. Lovering, MedChemComm 2013, 4, 515.
- 191,3-Bis(trifluoromethyl)benzene was selected as model substrate due to its favorable reduction potential (Ep/2=−2.63 V vs Fc+/Fc in MeCN)
- 20For more details, see the Supporting Information.
- 21
- 21aL. C. H. Maddock, A. Kennedy, E. Hevia, Chimia 2020, 74, 866;
- 21bA. Logallo, M. Mu, M. Melchor, E. Hevia, Angew. Chem. Int. Ed. 2022, 61, e202213246;
- 21cL. C. H. Maddock, T. Nixon, A. R. Kennedy, M. R. Probert, W. Clegg, E. Hevia, Angew. Chem. Int. Ed. 2018, 57, 187;
- 21dX.-W. Liu, C. Zarate, R. Martin, Angew. Chem. Int. Ed. 2019, 58, 2064;
- 21eH. Takemura, S. Nakashima, N. Kon, M. Yasutake, T. Shinmyozu, T. Inazu, J. Am. Chem. Soc. 2001, 123, 9293;
- 21fY. Sarazin, B. Liu, T. Roisnel, L. Maron, J.-F. Carpentier, J. Am. Chem. Soc. 2011, 133, 9069;
- 21gT. W. Butcher, J. L. Yang, W. M. Amberg, N. B. Watkins, N. D. Wilkinson, J. F. Hartwig, Nature 2020, 583, 548.
- 22For selected references:
- 22aF. Diederich, A. Meijere, Metal-catalyzed cross-coupling reactions, Wiley-VCH, Weinheim, 2004;
- 22bS. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299.
- 23This observation is tentatively attributed to the generation of a more reactive excite state of the corresponding anionic intermediate. See ref. [16b] for a similar finding.
- 24See ref. [20] for selected substrates that did not undergo the targeted α-difluoroalkylation event.
- 25Unfortunately, all our attempts to utilize chiral bases did not result in an asymmetric induction.
- 26This observation is tentatively ascribed to an unfavourable polarity mismatch between the in situ generated difluoromethyl radical and the oxygen-centered radical of TEMPO.
- 27The oxidation potential (Ep/2) of II measured approximately −1.6 V vs Fc+/Fc in MeCN. The substantial energy barrier for electron transfer (uphill by 0.6–0.8 V) is surmounted by the irreversibility of fluorine anion loss from the radical anions. A similar rationale is presented in reference 16 g.
- 28
- 28aT. Koenig, H. Fischer, in “‘Cage’ Effects”: Free Radicals (Ed.: J. Kochi), Wiley, New York, 1973;
- 28bJ. T. Barry, D. J. Berg, D. R. Tyler, J. Am. Chem. Soc. 2017, 139, 14399.
- 29An alternative radical-nucleophilic aromatic substitution (SRN1) radical chain mechanism was also possible, in which the electron transfer (ET) between II and ArCF3 serves as the reaction initiator, while the interaction between ArCF2 radical and II leads to the formation of a radical anion adduct (with superior reduction ability compared to II). This adduct subsequently undergoes ET to a new ArCF3 molecule, thereby sustaining the chain reaction.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.