Dearomatization of (Hetero)arenes through Photodriven Interplay between Polysulfide Anions and Formate**
Eugene Yew Kun Tan
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorAmirah S. Mat Lani
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorWayne Sow
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorDr. Yuliang Liu
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorDr. Haoyu Li
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorCorresponding Author
Prof. Dr. Shunsuke Chiba
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorEugene Yew Kun Tan
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorAmirah S. Mat Lani
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorWayne Sow
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorDr. Yuliang Liu
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorDr. Haoyu Li
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorCorresponding Author
Prof. Dr. Shunsuke Chiba
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371 Singapore
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2023-kccqn).
Abstract
The facile construction of C(sp3)-rich carbo- and heterocyclic compounds is a pivotal synthetic strategy to foster contemporary drug discovery programs. The downstream dearomatization of readily accessible two-dimensional (2D) planar arenes represents a direct pathway towards accessing three-dimensional (3D) aliphatic scaffolds. Here, we demonstrate that polysulfide anions are capable of catalyzing a dearomatization process of substituted naphthalenes, indoles, and other related heteroaromatic compounds in the presence of potassium formate and methanol under visible light irradiation. The developed protocol exhibits broad functional group tolerance, operational simplicity, scalability, and cost-effectiveness, representing a practical and sustainable synthetic tool for the arene dearomatization.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202309764-sup-0001-23.cif608 KB | Supporting Information |
ange202309764-sup-0001-24_Me.cif794.4 KB | Supporting Information |
ange202309764-sup-0001-28.cif972.1 KB | Supporting Information |
ange202309764-sup-0001-37.cif304.6 KB | Supporting Information |
ange202309764-sup-0001-41.cif372.6 KB | Supporting Information |
ange202309764-sup-0001-42.cif200.4 KB | Supporting Information |
ange202309764-sup-0001-45.cif333.4 KB | Supporting Information |
ange202309764-sup-0001-47.cif465.7 KB | Supporting Information |
ange202309764-sup-0001-48.cif467.9 KB | Supporting Information |
ange202309764-sup-0001-56.cif621.2 KB | Supporting Information |
ange202309764-sup-0001-59.cif766.5 KB | Supporting Information |
ange202309764-sup-0001-72.cif514.2 KB | Supporting Information |
ange202309764-sup-0001-79.cif713.3 KB | Supporting Information |
ange202309764-sup-0001-misc_information.pdf27.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. J. Huck, D. Sarlah, Chem 2020, 6, 1589–1603.
- 2W. C. Wertjes, E. H. Southgate, D. Sarlah, Chem. Soc. Rev. 2018, 47, 7996–8017.
- 3S. P. Roche, J. A. Porco Jr., Angew. Chem. Int. Ed. 2011, 50, 4068–4093.
- 4Y.-Z. Cheng, Z. Feng, X. Zhang, S.-L. You, Chem. Soc. Rev. 2022, 51, 2145–2170.
- 5F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752–6756.
- 6A. J. Birch, Pure Appl. Chem. 1996, 68, 553–556.
- 7J. Burrows, S. Kamo, K. Koide, Science 2021, 374, 741–746.
- 8P. Lei, Y. Ding, X. Zhang, A. Adijiang, H. Li, Y. Ling, J. An, Org. Lett. 2018, 20, 3439–3442.
- 9Y. Gao, K. Kubota, H. Ito, Angew. Chem. Int. Ed. 2023, 62, e202217723.
- 10B. K. Peters, K. X. Rodriguez, S. H. Reisberg, S. B. Beil, D. P. Hickey, Y. Kawamata, M. Collins, J. Starr, L. Chen, S. Udyavara, K. Klunder, T. J. Gorey, S. L. Anderson, M. Neurock, S. D. Minteer, P. S. Baran, Science 2019, 363, 838–845.
- 11J. D. Bell, J. A. Murphy, Chem. Soc. Rev. 2021, 50, 9540–9685.
- 12G. E. M. Crisenza, P. Melchiorre, Nat. Commun. 2020, 11, 803.
- 13R. C. McAtee, E. J. McClain, C. R. J. Stephenson, TRECHEM 2019, 1, 111–125.
- 14M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898–6926.
- 15J. P. Cole, D.-F. Chen, M. Kudisch, R. M. Pearson, C.-H. Lim, G. M. Miyake, J. Am. Chem. Soc. 2020, 142, 13573–13581.
- 16F. Glaser, C. Kerzig, O. S. Wenger, Angew. Chem. Int. Ed. 2020, 59, 10266–10284.
- 17S. Wu, F. Schiel, P. Melchiorre, Angew. Chem. Int. Ed. 2023, 62, e202306364.
- 18A. Chatterjee, B. König, Angew. Chem. Int. Ed. 2019, 58, 14289–14294.
- 19T. Yuan, L. Sun, Z. Wu, R. Wang, X. Cai, W. Lin, M. Zheng, X. Wang, Nat. Catal. 2022, 5, 1157–1168.
- 20M. Montalti, A. Credi, L. Prodi, M. T. Gandolfi, Handbook of Photochemistry, 3rd ed., CRC/Taylor & Francis, Boca Raton, 2006, pp. 86–226.
10.1201/9781420015195 Google Scholar
- 21Y.-Z. Cheng, X.-L. Huang, W.-H. Zhuang, Q.-R. Zhao, X. Zhang, T.-S. Mei, S.-L. You, Angew. Chem. Int. Ed. 2020, 59, 18062–18067.
- 22J. Zhang, S. Mück-Lichtenfeld, A. Studer, Nature 2023, 619, 506–513.
- 23R. Steudel, T. Chivers, Chem. Soc. Rev. 2019, 48, 3279–3319.
- 24H. Li, X. Tang, J. H. Pang, X. Wu, E. K. L. Yeow, J. Wu, S. Chiba, J. Am. Chem. Soc. 2021, 143, 481–487.
- 25H. Li, Y. Liu, S. Chiba, Chem. Commun. 2021, 57, 6264–6267.
- 26H. Li, S. Chiba, Chem Catal. 2022, 2, 1128–1142.
- 27H. E. Zimmerman, Acc. Chem. Res. 2012, 45, 164–170.
- 28F. Parsaee, M. C. Senarathna, P. B. Kannangara, S. N. Alexander, P. D. E. Arche, E. R. Welin, Nat. Chem. Rev. 2021, 5, 486–499.
- 29D. Ravelli, M. Fagnoni, T. Fukuyama, T. Nishikawa, I. Ryu, ACS Catal. 2018, 8, 701–713.
- 30B. P. Roberts, Chem. Soc. Rev. 1999, 28, 25–35.
- 31D. C. Grills, S. V. Lymar, Phys. Chem. Chem. Phys. 2018, 20, 10011–10017.
- 32G. Filardo, S. Gambino, G. Silvestri, A. Gennaro, E. Vianello, J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 303–309.
- 33A. F. Chmiel, O. P. Williams, C. P. Chernowsky, C. S. Yeung, Z. K. Wickens, J. Am. Chem. Soc. 2021, 143, 10882–10889.
- 34C. M. Hendy, G. C. Smith, Z. Xu, T. Lian, N. T. Jui, J. Am. Chem. Soc. 2021, 143, 8987–8992.
- 35S. N. Alektiar, Z. K. Wickens, J. Am. Chem. Soc. 2021, 143, 13022–13028.
- 36S. N. Alektiar, J. Han, Y. Dang, C. Z. Rubel, Z. K. Wickens, J. Am. Chem. Soc. 2023, 145, 10991–10997.
- 37Deposition numbers 2265001 (for 23-cis), 2265002 (for 24-Me-major, which was the major diastereomer of methyl ester 24-Me derived from acid 24 via esterification), 2265003 (for 28), 2265004 (for 37), 2265005 (for 41), 2265006 (for 42), 2265007 (for 45), 2265008 (for 47), 2265009 (for the major diastereomer of 48), 2265010 (for 56), 2265011 (for 59), 2265038 (for 72), and 2265040 (for 79-trans) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 38J. D. Sellars, P. G. Steel, Eur. J. Org. Chem. 2007, 3815–3828.
- 39R. S. Ward, Nat. Prod. Rep. 1997, 14, 43–74.
- 40S. Park, S. Kim, D. Shin, Phytochem. Rev. 2021, 20, 1033–1054.
- 41R. C. Andrews, S. J. Teague, A. I. Meyers, J. Am. Chem. Soc. 1988, 110, 7854–7858.
- 42W. Zhuang, Y.-Z. Cheng, X.-L. Huang, Q. Huang, X. Zhang, Org. Chem. Front. 2021, 8, 319–325.
- 43M. Mikhael, S. N. Alektiar, C. S. Yeung, Z. K. Wickens, Angew. Chem. Int. Ed. 2023, 62, e202303264.
- 44S. R. Mangaonkar, H. Hayashi, H. Takano, W. Kanna, S. Maeda, T. Mita, ACS Catal. 2023, 13, 2482–2488.
- 45V. V. Palaszczuk, A. W. Addison, Inorg. Chim. Acta 2000, 298, 97–102.
- 46D. Y. Ong, Z. Yen, A. Yoshii, J. R. Imbernon, R. Takita, S. Chiba, Angew. Chem. Int. Ed. 2019, 58, 4992–4997.
- 47Z. Tang, K. Mo, X. Ma, J. Huang, D. Zhao, Angew. Chem. Int. Ed. 2022, 61, e202208089.
- 48A. R. Katritzky, H. He, K. Suzuki, J. Org. Chem. 2000, 65, 8210–8213.
- 49J. Wang, J. Chen, C. W. Kee, C.-H. Tan, Angew. Chem. Int. Ed. 2012, 51, 2382–2386.
- 50S. Kojima, H. Inai, T. Hidaka, T. Fukuzaki, K. Ohkata, J. Org. Chem. 2002, 67, 4093–4099.
- 51R. Aissaoui, A. Nourry, A. Coquel, T. T. H. Dao, A. Derdour, J.-J. Helesbeux, O. Duval, A.-S. Castanet, J. Mortier, J. Org. Chem. 2012, 77, 718–724.
- 52Y. Zhao, V. Snieckus, Org. Lett. 2015, 17, 4674–4677.
- 53M. J. Riveira, C. M. Diez, M. P. Mischne, E. G. Mata, J. Org. Chem. 2018, 83, 10001–10014.
- 54S. Sato, K. Sakata, Y. Hashimoto, H. Takikawa, K. Suzuki, Angew. Chem. Int. Ed. 2017, 56, 12608–12613.
- 55A. Biafora, T. Krause, D. Hackenberger, F. Belitz, L. J. Gooßen, Angew. Chem. Int. Ed. 2016, 55, 14752–14755.
- 56Y.-H. Zhang, B.-F. Shi, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 6097–6100.
- 57U. C. Rajesh, Y. Losovyj, C.-H. Chen, J. M. Zaleski, ACS Catal. 2020, 10, 3349–3359.
- 58T. Iwasaki, K. Kondo, T. Kuroda, Y. Moritani, S. Yamagata, M. Sugiura, H. Kikkawa, O. Kaminuma, K. Ikezawa, J. Med. Chem. 1996, 39, 2696–2704.
- 59J. Xiao, G. Nan, Y.-W. Wang, Y. Peng, Molecules 2018, 23, 3037.
- 60P. Álvarez-Bercedo, R. Martin, J. Am. Chem. Soc. 2010, 132, 17352–17353.
- 61E. Bergmann, T. Berlin, J. Org. Chem. 1938, 3, 246–250.
- 62K. Yang, Y. Mao, J. Xu, H. Wang, Y. He, W. Li, Q. Song, J. Am. Chem. Soc. 2021, 143, 10048–10053.
- 63A. Basoglu, S. Dirkmann, N. Z. Golpayegani, S. Vortherms, J. Tentrop, D. Nowottnik, H. Prinz, R. Fröhlich, K. Müller, Eur. J. Med. Chem. 2017, 134, 119–132.
- 64K. Niimi, H. Mori, I. Osaka, H. Kakizoe, K. Takimiya, C. Adachi, Chem. Commun. 2012, 48, 5892–5894.
- 65Y. Liu, H. Li, E. Y. K. Tan, E. B. Santiko, Y. Chitose, M. Abe, S. Chiba, Chem Catal. 2022, 2, 1–24.
- 66A. Uehara, S. Olivero, B. Michelet, A. Martin-Mingot, S. Thibaudeau, E. Duñach, Eur. J. Org. Chem. 2019, 46–49.
- 67P. Dydio, J. N. H. Reek, Angew. Chem. Int. Ed. 2013, 52, 3878–3882.
- 68B. Malapel-Andrieu, J.-Y. Mérour, Tetrahedron 1998, 54, 11079–11094.
- 69H. Fuse, M. Kojima, H. Mitsunuma, M. Kanai, Org. Lett. 2018, 20, 2042–2045.
- 70K. Dong, R. Sang, J. Liu, R. Razzaq, R. Franke, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2017, 56, 6203–6207.
- 71C. J. Teskey, P. Adler, C. R. Gonçalves, N. Maulide, Angew. Chem. Int. Ed. 2019, 58, 447–451.
- 72H. Shirakawa, H. Sano, Synthesis 2014, 46, 1788–1792.
- 73K. Maeda, T. Hamada, S. Onitsuka, H. Okamura, J. Nat. Prod. 2017, 80, 1446–1449.
- 74R. Luo, M.-M. Chen, L. Ouyang, A. S. C. Chan, G. Lu, Eur. J. Org. Chem. 2020, 4805–4811.
- 75R. Kuwano, M. Kashiwabara, Org. Lett. 2006, 8, 2653–2655.
- 76R. Rocaboy, I. Anastasiou, O. Baudoin, Angew. Chem. Int. Ed. 2019, 58, 14625–14628.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.