Continuous-Wave Raman Lasing from Metal-Linked Organic Dimer Microcrystals
Xiaolong Liu
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Kang Wang
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorAng Ren
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTongjin Zhang
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorShizhe Ren
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Jiannian Yao
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Haiyun Dong
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Yong Sheng Zhao
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXiaolong Liu
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Kang Wang
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorAng Ren
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorTongjin Zhang
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorShizhe Ren
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Jiannian Yao
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Haiyun Dong
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Yong Sheng Zhao
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorAbstract
Stimulated Raman scattering offers an alternative strategy to explore continuous-wave (c.w.) organic lasers, which, however, still suffers from the limitation of inadequate Raman gain in organic material systems. Here we propose a metal-linking approach to enhance the Raman gain of organic molecules. Self-assembled microcrystals of the metal linked organic dimers exhibit large Raman gain, therefore allowing for c.w. Raman lasing. Furthermore, broadband tunable Raman lasing is achieved in the organic dimer microcrystals by adjusting excitation wavelengths. This work advances the understanding of Raman gain in organic molecules, paving a way for the design of c.w. organic lasers.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202309386-sup-0001-misc_information.pdf4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. W. Eaton, A. Fu, A. B. Wong, A. B. Wong, C. Z. Ning, P. Yang, Nat. Rev. Mater. 2016, 1, 16028;
- 1bA. J. C. Kuehne, M. C. Gather, Chem. Rev. 2016, 116, 12823–12864;
- 1cW. Zhang, J. Yao, Y. S. Zhao, Acc. Chem. Res. 2016, 49, 1691–1700;
- 1dR.-M. Ma, R. F. Oulton, Nat. Nanotechnol. 2019, 14, 12–22;
- 1eY. Jiang, Y.-Y. Liu, X. Liu, H. Lin, K. Gao, W.-Y. Lai, W. Huang, Chem. Soc. Rev. 2020, 49, 5885–5944.
- 2
- 2aF. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, A. Pan, J. Am. Chem. Soc. 2011, 133, 2037–2039;
- 2bC.-Z. Ning, L. Dou, P. Yang, Nat. Rev. Mater. 2017, 2, 17070;
- 2cX. Qiao, B. Midya, Z. Gao, Z. Zhang, H. Zhao, T. Wu, J. Yim, R. Agarwal, N. M. Litchinitser, L. Feng, Science 2021, 372, 403–408.
- 3
- 3aH.-H. Fang, J. Yang, J. Feng, T. Yamao, S. Hotta, H.-B. Sun, Laser Photonics Rev. 2014, 8, 687–715;
- 3bL. Persano, A. Camposeo, P. D. Carro, V. Fasano, M. Moffa, R. Manco, S. D'Agostino, D. Pisignano, Adv. Mater. 2014, 26, 6542–6547;
- 3cX. Wang, Q. Liao, H. Li, S. Bai, Y. Wu, X. Lu, H. Hu, Q. Shi, H. Fu, J. Am. Chem. Soc. 2015, 137, 9289–9295;
- 3dD. Venkatakrishnarao, Y. S. L. V. Narayana, M. A. Mohaiddon, E. A. Mamonov, N. Mitetelo, I. A. Kolmychek, A. I. Maydykovskiy, V. B. Novikov, T. V. Murzina, R. Chandrasekar, Adv. Mater. 2017, 29, 1605260;
- 3eR. Huang, C. Wang, Y. Wang, H. Zhang, Adv. Mater. 2018, 30, 1800814;
- 3fK. Iwai, H. Yamagishi, C. Herzberger, Y. Sato, H. Tsuji, K. Albrecht, K. Yamamoto, F. Sasaki, H. Sato, A. Asaithambi, A. Lorke, Y. Yamamoto, Angew. Chem. Int. Ed. 2020, 59, 12674–12679;
- 3gC. Zhang, F.-J. Shu, C.-L. Zou, H. Dong, J. Yao, Y. S. Zhao, Adv. Mater. 2023, 35, 2300054.
- 4
- 4aY. J. Li, Y. Lv, C.-L. Zou, W. Zhang, J. Yao, Y. S. Zhao, J. Am. Chem. Soc. 2016, 138, 2122–2125;
- 4bY. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, H. Sun, Nano Lett. 2016, 16, 448–453;
- 4cX. Wang, M. Shoaib, X. Wang, X. Zhang, M. He, Z. Luo, W. Zheng, H. Li, T. Yang, X. Zhu, L. Ma, A. Pan, ACS Nano 2018, 12, 6170–6178;
- 4dQ. Zhang, Q. Shang, R. Su, T. T. H. Do, Q. Xiong, Nano Lett. 2021, 21, 1903–1914.
- 5
- 5aA. Fernandez-Bravo, D. Wang, E. S. Barnard, A. Teitelboim, C. Tajon, J. Guan, G. C. Schatz, B. E. Cohen, E. M. Chan, P. J. Schuck, T. W. Odom, Nat. Mater. 2019, 18, 1172–1176;
- 5bA. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J.-C. Ribierre, C. Adachi, Sci. Adv. 2017, 3, e160257;
- 5cJ. Song, Q. Shang, X. Deng, Y. Liang, C. Li, X. Liu, Q. Xiong, Q. Zhang, Adv. Mater. 2023, 35, 2302170;
- 5dF. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, E. H. Sargent, Nature 2017, 544, 75–79.
- 6
- 6aX. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, Y.-F. Xiao, Science 2017, 358, 344–347;
- 6bD. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, Nat. Photonics 2013, 7, 597–607.
- 7H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, Prog. Quantum Electron. 2008, 32, 121–158.
- 8
- 8aH. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. A. Paniccia, Nature 2005, 433, 725–728;
- 8bX. Shen, H. Choi, D. Chen, W. Zhao, A. M. Armani, Nat. Photonics 2020, 14, 95–101;
- 8cY. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. A. Noda, Nature 2013, 498, 470–474;
- 8dB.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, Y.-F. Xiao, Proc. Natl. Acad. Sci. USA 2014, 111, 14657–14662;
- 8eP. Latawiec, V. Venkataraman, M. Burek, B. Hausmann, I. Bulu, M. Lončar, Optica 2015, 2, 924–928;
- 8fX. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, J. Wang, Optica 2017, 4, 893–896.
- 9
- 9aA. A. Kaminskii, L. Bohatý, P. Becker, H. J. Eichler, H. Rhee, M. Maczka, J. Hanuza, Laser Phys. Lett. 2007, 4, 291–303;
- 9bH. Mizuno, U. Haku, Y. Marutani, A. Ishizumi, H. Yanagi, F. Sasaki, S. Hotta, Adv. Mater. 2012, 24, 5744–5749;
- 9cS. Varghese, S.-J. Yoon, E. M. Calzado, S. Casado, P. G. Boj, M. A. Díaz-García, R. Resel, R. Fischer, B. Milián-Medina, R. Wannemacher, S. Y. Park, J. Gierschner, Adv. Mater. 2012, 24, 6473–6478.
- 10
- 10aH. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, M. Sodeoka, J. Am. Chem. Soc. 2012, 134, 20681–20689;
- 10bS. Li, T. Chen, Y. Wang, L. Liu, F. Lv, Z. Li, Y. Huang, K. S. Schanze, S. Wang, Angew. Chem. Int. Ed. 2017, 56, 13455–13458;
- 10cY. Yu, Y. Tang, K. Chu, T. Gao, Z. J. Smith, J. Am. Chem. Soc. 2022, 144, 15314–15323;
- 10dY. Li, K. M. Townsend, R. S. Dorn, J. A. Prescher, E. O. Potma, J. Phys. Chem. B 2023, 127, 1976–1982.
- 11
- 11aF. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, W. Min, Nat. Methods 2018, 15, 194–200;
- 11bK. Dodo, K. Fujita, M. Sodeoka, J. Am. Chem. Soc. 2022, 144, 19651–19667.
- 12J. Hulliger, A. A. Kaminskii, H. J. Eichler, Adv. Funct. Mater. 2001, 11, 243–250.
- 13
- 13aG. Wang, X. Liu, Y. Ren, C. Zhang, X. Tao, Crystals 2017, 7, 154;
- 13bD. Ma, K. Lin, Y. Dong, H. Choubisa, A. H. Proppe, D. Wu, Y.-K. Wang, B. Chen, P. Li, J. Z. Fan, F. Yuan, A. Johnston, Y. Liu, Y. Kang, Z.-H. Lu, Z. Wei, E. H. Sargent, Nature 2021, 599, 594–598.
- 14G. Niu, A. Ruditskiy, M. Vara, Y. Xia, Chem. Soc. Rev. 2015, 44, 5806–5820.
- 15K. A. Jackson, Kinetic processes: crystal growth, diffusion, and phase transformations in materials, Wiley, New York, 2006.
- 16H. Dong, C. Zhang, Y. Liu, Y. Yan, F. Hu, Y. S. Zhao, Angew. Chem. Int. Ed. 2018, 57, 3108–3112.
- 17
- 17aM. Annadhasan, A. R. Agrawal, S. Bhunia, V. V. Pradeep, S. S. Zade, C. M. Reddy, R. Chandrasekar, Angew. Chem. Int. Ed. 2020, 59, 13852–13858;
- 17bY. Lv, Z. Xiong, Z. Yao, Y. Yang, S. Xiang, Z. Zhang, Y. S. Zhao, J. Am. Chem. Soc. 2019, 141, 19959–19963;
- 17cS. Li, J. Chen, Y. Wei, J. De, H. Geng, Q. Liao, R. Chen, H. Fu, Angew. Chem. Int. Ed. 2022, 61, e202209211.
- 18
- 18aW. Lu, Z. Gao, X. Liu, X. Tian, Q. Wu, C. Li, Y. Sun, Y. Liu, X. Tao, J. Am. Chem. Soc. 2018, 140, 13089–13096;
- 18bX. Du, X. Guo, Z. Gao, F. Liu, F. Guo, S. Wang, H. Wang, Y. Sun, X. Tao, Angew. Chem. Int. Ed. 2021, 60, 23320–23326.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.