Synthesis of Axially Chiral QUINAP Derivatives by Ketone-Catalyzed Enantioselective Oxidation
Peng-Ying Jiang
Harbin Institute of Technology, Harbin, 150001 China
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. San Wu
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. Guan-Jun Wang
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Dr. Shao-Hua Xiang
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Bin Tan
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorPeng-Ying Jiang
Harbin Institute of Technology, Harbin, 150001 China
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. San Wu
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. Guan-Jun Wang
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Dr. Shao-Hua Xiang
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Bin Tan
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorAbstract
QUINAPs have emerged as a pivotal class of axially chiral compounds with remarkable features in the stereoinduction of diverse enantioselective transformations. However, the confined substrate range and extravagant price still pose challenges, limiting their broader utilization. Herein, we describe the first atroposelective oxidation of an N atom using a chiral ketone catalyst, allowing the kinetic resolution of QUINAPOs to give both the unreacted substrates and their corresponding N-oxides with excellent enantioselectivity. Importantly, the enantioenriched products can be readily converted into the QUINAP targets without any loss of stereochemical integrity. Mechanistic investigations indicate that a dioxirane, generated through the oxidation of the ketone with oxone, acts as the active catalytic species. Furthermore, we have successfully extended this catalytic system to the kinetic resolution of QUINOLs and the dynamic kinetic transformation of pyridine analogues of QUINAPO possessing a labile stereogenic axis. The practicality of the developed protocol is further demonstrated by the successful application of QUINAPO N-oxide as a Lewis base catalyst in a series of enantioselective transformations.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202309272-sup-0001-Catalyst.cif2.3 MB | Supporting Information |
ange202309272-sup-0001-Compound_2a.cif1 MB | Supporting Information |
ange202309272-sup-0001-misc_information.pdf22.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029–3070;
- 1bJ.-H. Xie, Q.-L. Zhou, Acc. Chem. Res. 2008, 41, 581–593.
- 2
- 2aE. Framery, B. Andrioletti, M. Lemaire, Tetrahedron: Asymmetry 2010, 21, 1110–1124;
- 2bJ. Wencel-Delord, A. Panossian, F. R. Leroux, F. Colobert, Chem. Soc. Rev. 2015, 44, 3418–3430.
- 3
- 3aE. Fernandez, K. Maeda, M. W. Hooper, J. M. Brown, Chem. Eur. J. 2000, 6, 1840–1846;
10.1002/(SICI)1521-3765(20000515)6:10<1840::AID-CHEM1840>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 3bC. Koradin, K. Polborn, P. Knochel, Angew. Chem. Int. Ed. 2002, 41, 2535–2538;
10.1002/1521-3773(20020715)41:14<2535::AID-ANIE2535>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 3cJ. B. Morgan, S. P. Miller, J. P. Morken, J. Am. Chem. Soc. 2003, 125, 8702–8703;
- 3dC. Chen, X. Li, S. L. Schreiber, J. Am. Chem. Soc. 2003, 125, 10174–10175;
- 3eN. Gommermann, C. Koradin, K. Polborn, P. Knochel, Angew. Chem. Int. Ed. 2003, 42, 5763–5766;
- 3fT. Miura, M. Yamauchi, A. Kosaka, M. Murakami, Angew. Chem. Int. Ed. 2010, 49, 4955–4957;
- 3gB. V. Rokade, P. J. Guiry, ACS Catal. 2018, 8, 624–643.
- 4
- 4aN. W. Alcock, J. M. Brown, D. I. Hulmes, Tetrahedron: Asymmetry 1993, 4, 743–756;
- 4bJ.-M. Valk, T. D. W. Claridge, J. M. Brown, D. Hibbs, M. B. Hursthouse, Tetrahedron: Asymmetry 1995, 6, 2597–2610;
- 4cH. Doucet, J. M. Brown, Tetrahedron: Asymmetry 1997, 8, 3775–3784;
- 4dC.-W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M. Brown, A. R. Cowley, D. I. Hulmes, A. J. Blacker, Org. Process Res. Dev. 2003, 7, 379–384.
- 5
- 5aR. J. Kloetzing, P. Knochel, Tetrahedron: Asymmetry 2006, 17, 116–123;
- 5bT. Thaler, F. Geittner, P. Knochel, Synlett 2007, 2007, 2655–2658;
- 5cJ. Clayden, S. P. Fletcher, J. J. W. McDouall, S. J. M. Rowbottom, J. Am. Chem. Soc. 2009, 131, 5331–5343;
- 5dT. F. Knöpfel, P. Aschwanden, T. Ichikawa, T. Watanabe, E. M. Carreira, Angew. Chem. Int. Ed. 2004, 43, 5971–5973;
- 5eT. Fekner, H. Müller-Bunz, P. J. Guiry, Org. Lett. 2006, 8, 5109–5112.
- 6
- 6aV. Bhat, S. Wang, B. M. Stoltz, S. C. Virgil, J. Am. Chem. Soc. 2013, 135, 16829–16832;
- 6bP. Ramírez-López, A. Ros, B. Estepa, R. Fernández, B. Fiser, E. Gómez-Bengoa, J. M. Lassaletta, ACS Catal. 2016, 6, 3955–3964;
- 6cS.-J. Han, V. Bhat, B. M. Stoltz, S. C. Virgil, Adv. Synth. Catal. 2019, 361, 441–444.
- 7P.-Y. Jiang, K.-F. Fan, S. Li, S.-H. Xiang, B. Tan, Nat. Commun. 2021, 12, 2384.
- 8
- 8aE. Bergin, C. T. O'Connor, S. B. Robinson, E. M. McGarrigle, C. P. O'Mahony, D. G. Gilheany, J. Am. Chem. Soc. 2007, 129, 9566–9567;
- 8bJ. Han, V. A. Soloshonok, K. D. Klika, J. Drabowicz, A. Wzorek, Chem. Soc. Rev. 2018, 47, 1307–1350.
- 9S. Miyano, L. D. L. Lu, S. M. Viti, K. B. Sharpless, J. Org. Chem. 1983, 48, 3608–3611.
- 10S. Colonna, N. Gaggero, J. Drabowicz, P. Łyżwa, M. Mikołajczyk, Chem. Commun. 1999, 1787–1788.
- 11
- 11aS. Miyano, L. D. L. Lu, S. M. Viti, K. B. Sharpless, J. Org. Chem. 1985, 50, 4350–4360;
- 11bS. Bhadra, H. Yamamoto, Angew. Chem. Int. Ed. 2016, 55, 13043–13046.
- 12
- 12aS.-Y. Hsieh, Y. Tang, S. Crotti, E. A. Stone, S. J. Miller, J. Am. Chem. Soc. 2019, 141, 18624–18629;
- 12bE. A. Stone, K. J. Cutrona, S. J. Miller, J. Am. Chem. Soc. 2020, 142, 12690–12698;
- 12cY. Tang, S. J. Miller, J. Am. Chem. Soc. 2021, 143, 9230–9235.
- 13
- 13aJ. K. Cheng, S.-H. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 2021, 121, 4805–4902;
- 13bB.-C. Da, S.-H. Xiang, S. Li, B. Tan, Chin. J. Chem. 2021, 39, 1787–1796;
- 13cJ. K. Cheng, S.-H. Xiang, B. Tan, Acc. Chem. Res. 2022, 55, 2920–2937.
- 14
- 14aM. Frohn, Y. Shi, Synthesis 2000, 2000, 1979–2000;
10.1055/s-2000-8715 Google Scholar
- 14bY. Zhu, Q. Wang, R. G. Cornwall, Y. Shi, Chem. Rev. 2014, 114, 8199–8256.
- 15C. J. Stearman, V. Behar, Tetrahedron Lett. 2002, 43, 1943–1946.
- 16
- 16aR. Mello, M. Fiorentino, O. Sciacovelli, R. Curci, J. Org. Chem. 1988, 53, 3890–3891;
- 16bR. Mello, M. Fiorentino, C. Fusco, R. Curci, J. Am. Chem. Soc. 1989, 111, 6749–6757;
- 16cD. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, J.-H. Zheng, K.-K. Cheung, J. Am. Chem. Soc. 1996, 118, 491–492;
- 16dY. Tu, Z.-X. Wang, Y. Shi, J. Am. Chem. Soc. 1996, 118, 9806–9807;
- 16eD. Yang, X.-C. Wang, M.-K. Wong, Y.-C. Yip, M.-W. Tang, J. Am. Chem. Soc. 1996, 118, 11311–11312;
- 16fS. E. Denmark, Z. Wu, C. M. Crudden, H. Matsuhashi, J. Org. Chem. 1997, 62, 8288–8289;
- 16gC.-E. Song, Y.-H. Kim, K.-C. Lee, S.-g. Lee, B.-W. Jin, Tetrahedron: Asymmetry 1997, 8, 2921–2926;
- 16hD. Yang, M.-K. Wong, Y.-C. Yip, X.-C. Wang, M.-W. Tang, J.-H. Zheng, K.-K. Cheung, J. Am. Chem. Soc. 1998, 120, 5943–5952;
- 16iS. E. Denmark, Z. Wu, Synlett 1999, 847–859;
- 16jA. Armstrong, I. Washington, K. N. Houk, J. Am. Chem. Soc. 2000, 122, 6297–6298;
- 16kA. Solladié-Cavallo, L. Jierry, A. Klein, M. Schmitt, R. Welter, Tetrahedron: Asymmetry 2004, 15, 3891–3898;
- 16lS. T. Schneebeli, M. L. Hall, R. Breslow, R. Friesner, J. Am. Chem. Soc. 2009, 131, 3965–3973.
- 17
- 17aA. V. Malkov, L. Dufková, L. Farrugia, P. Kočovský, Angew. Chem. Int. Ed. 2003, 42, 3674–3677;
- 17bA. V. Malkov, P. Ramírez-López, L. Biedermannová, L. Rulíšek, L. Dufková, M. Kotora, F. Zhu, P. Kočovský, J. Am. Chem. Soc. 2008, 130, 5341–5348.
- 18Deposition numbers 2277706 (for (R)-2 a), 2287648 (for (S)-3 c), 2287649 (for (R)-6 e) and 2277707 (for derivative of catalyst C7) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.