Defect Rich Structure Activated 3D Palladium Catalyst for Methanol Oxidation Reaction
Xueting Zhang
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lan Hui
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDengxin Yan
Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
Search for more papers by this authorJinze Li
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXi Chen
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHan Wu
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yuliang Li
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXueting Zhang
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lan Hui
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDengxin Yan
Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
Search for more papers by this authorJinze Li
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXi Chen
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHan Wu
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yuliang Li
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorAbstract
Controlling the structure and properties of catalysts through atomic arrangement is the source of producing a new generation of advanced catalysts. A highly active and stable catalyst in catalytic reactions strongly depends on an ideal arrangement structure of metal atoms. We demonstrated that the introduction of the defect-rich structures, low coordination number (CN), and tensile strain in three-dimensional (3D) urchin-like palladium nanoparticles through chlorine bonded with sp-C in graphdiyne (Pd-UNs/Cl-GDY) can regulate the arrangement of metal atoms in the palladium nanoparticles to form a special structure. In situ Fourier infrared spectroscopy (FTIR) and theoretical calculation results show that Pd-UNs/Cl-GDY catalyst is beneficial to the oxidation and removal of CO intermediates. The Pd-UNs/Cl-GDY for methanol oxidation reaction (MOR) that display high current density (363.6 mA cm−2) and mass activity (3.6 A mgPd−1), 12.0 and 10.9 times higher than Pd nanoparticles, respectively. The Pd-UNs/Cl-GDY catalyst also exhibited robust stability with still retained 95 % activity after 2000 cycles. A defects libraries of the face-centered cubic and hexagonal close-packed crystal catalysts (FH-NPs) were synthesized by introducing chlorine in graphdiyne. Such defect-rich structures, low CN, and tensile strain tailoring methods have opened up a new way for the catalytic reaction of MOR.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202308968-sup-0001-misc_information.pdf6.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. G. Liu, W. Zhou, Y. R. Ji, B. Chen, G. T. Fu, Q. B. Yun, S. M. Chen, Y. X. Lin, P. F. Yin, X. Y. Cui, J. W. Liu, F. Q. Meng, Q. H. Zhang, L. Song, L. Gu, H. Zhang, J. Am. Chem. Soc. 2021, 143, 11262–11270.
- 2L. Huang, J. Zou, J. Y. Ye, Z. Y. Zhou, Z. Lin, X. Kang, P. K. Jain, S. Chen, Angew. Chem. Int. Ed. 2019, 58, 8794–8798.
- 3W. Liang, Y. Wang, L. Zhao, W. Guo, D. Li, W. Qin, H. Wu, Y. Sun, L. Jiang, Adv. Mater. 2021, 33, 2100713.
- 4W. Huang, A. C. Johnston-Peck, T. Wolter, W. D. Yang, L. Xu, J. Oh, B. A. Reeves, C. Zhou, M. E. Holtz, A. A. Herzing, A. M. Lindenberg, M. Mavrikakis, M. Cargnello, Science 2021, 373, 1518–1523.
- 5M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang, Y. Qin, J. Y. Ma, F. Lin, D. Su, G. Lu, S. Guo, Nature 2019, 574, 81–85.
- 6C. Liu, Y. Shen, J. F. Zhang, G. Li, X. R. Zheng, X. P. Han, L. Y. Xu, S. Z. Zhu, Y. A. Chen, Y. D. Deng, W. B. Hu, Adv. Energy Mater. 2022, 12, 2103505.
- 7M. Liu, R. Zhang, W. Chen, Chem. Rev. 2014, 114, 5117–5160.
- 8L. Xiong, Z. Sun, X. Zhang, L. Zhao, P. Huang, X. Chen, H. Jin, H. Sun, Y. Lian, Z. Deng, M. H. Rummerli, W. Yin, D. Zhang, S. Wang, Y. Peng, Nat. Commun. 2019, 10, 3782.
- 9Q. Zhu, Z. Pan, Z. Zhao, G. Cao, L. Luo, C. Ni, H. Wei, Z. Zhang, F. Sansoz, J. Wang, Nat. Commun. 2021, 12, 558.
- 10S. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng, F. Zhang, X. Liu, Z. Su, J. Hu, Y. Qian, L. Zhou, Y. He, B. Song, L. Lei, X. Zhang, S. Jin, Nat. Nanotechnol. 2021, 16, 1371–1377.
- 11Q. Huang, Q. Zhu, Y. Chen, M. Gong, J. Li, Z. Zhang, W. Yang, J. Wang, H. Zhou, J. Wang, Nat. Commun. 2021, 12, 6695.
- 12H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu, J. Zhao, Y. Liu, H. Yuan, F. Abild-Pedersen, F. B. Prinz, J. K. Norskov, Y. Cui, Science 2016, 354, 1031–1036.
- 13J. W. Wang, S. Narayanan, J. Y. Huang, Z. Zhang, T. Zhu, S. X. Mao, Nat. Commun. 2013, 4, 2340.
- 14Y. He, B. Li, C. Wang, S. X. Mao, Nat. Commun. 2020, 11, 2483.
- 15T. He, W. Wang, F. Shi, X. Yang, X. Li, J. Wu, Y. Yin, M. Jin, Nature 2021, 598, 76–81.
- 16L. Wang, Z. Zeng, W. Gao, T. Maxson, D. Raciti, M. Giroux, X. Pan, C. Wang, J. Greeley, Science 2019, 363, 870–874.
- 17Z. Li, J. Y. Fu, Y. Feng, C. K. Dong, H. Liu, X. W. Du, Nat. Catal. 2019, 2, 1107–1114.
- 18Z. R. Ramadhan, A. R. Poerwoprajitno, S. Cheong, R. F. Webster, P. V. Kumar, S. Cychy, L. Gloag, T. M. Benedetti, C. E. Marjo, M. Muhler, D. W. Wang, J. J. Gooding, W. Schuhmann, R. D. Tilley, J. Am. Chem. Soc. 2022, 144, 11094–11098.
- 19C. Choi, T. Cheng, M. Flores Espinosa, H. Fei, X. Duan, W. A. Goddard 3rd, Y. Huang, Adv. Mater. 2019, 31, 1805405.
- 20G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 2010, 46, 3256–3258.
- 21J. Y. Zhou, X. Gao, R. Liu, Z. Q. Xie, J. Yang, S. Q. Zhang, G. M. Zhang, H. B. Liu, Y. L. Li, J. Zhang, Z. F. Liu, J. Am. Chem. Soc. 2015, 137, 7596–7599.
- 22J. Li, X. Gao, B. Liu, Q. L. Feng, X. B. Li, M. Y. Huang, Z. F. Liu, J. Zhang, C. H. Tung, L. Z. Wu, J. Am. Chem. Soc. 2016, 138, 3954–3957.
- 23
- 23aY. Fang, Y. X. Liu, L. Qi, Y. R. Xue, Y. L. Li, Chem. Soc. Rev. 2022, 51, 2681–2709;
- 23bY. Liu, Y. Gao, F. He, Y. Xue, Y. Li, CCS Chem. 2023, 5, 971–981;
- 23cX. Zheng, Y. Xue, C. Zhang, Y. Li, CCS Chem. 2023, 5, 1653–1662;
- 23dF. He, Y. Li, CCS Chem. 2023, 5, 72–94.
- 24S. Zhuo, Y. Shi, L. Liu, R. Li, L. Shi, D. H. Anjum, Y. Han, P. Wang, Nat. Commun. 2018, 9, 3132.
- 25N. Wang, X. Li, Z. Tu, F. Zhao, J. He, Z. Guan, C. Huang, Y. Yi, Y. Li, Angew. Chem. Int. Ed. 2018, 57, 3968–3973.
- 26C. Xing, Y. Xue, B. Huang, H. Yu, L. Hui, Y. Fang, Y. Liu, Y. Zhao, Z. Li, Y. Li, Angew. Chem. Int. Ed. 2019, 58, 13897–13903.
- 27Y. S. Zhao, J. W. Wan, H. Y. Yao, L. J. Zhang, K. F. Lin, L. Wang, N. L. Yang, D. B. Liu, L. Song, J. Zhu, L. Gu, L. Liu, H. J. Zhao, Y. L. Li, D. Wang, Nat. Chem. 2018, 10, 924–931.
- 28Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Nat. Commun. 2018, 9, 1460.
- 29L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, Y. Li, J. Am. Chem. Soc. 2019, 141, 10677–10683.
- 30C. Pan, C. Wang, X. Zhao, P. Xu, F. Mao, J. Yang, Y. Zhu, R. Yu, S. Xiao, Y. Fang, H. Deng, Z. Luo, J. Wu, J. Li, S. Liu, S. Xiao, L. Zhang, Y. Guo, J. Am. Chem. Soc. 2022, 144, 4942–4951.
- 31M. Li, Q. Lv, W. Si, Z. Hou, C. Huang, Angew. Chem. Int. Ed. 2022, 61, e202208238.
- 32J. Koo, B. Huang, H. Lee, G. Kim, J. Nam, Y. Kwon, H. Lee, J. Phys. Chem. C 2014, 118, 2463–2468.
- 33H. Huang, J. Zhao, B. Weng, F. Lai, M. Zhang, J. Hofkens, M. B. J. Roeffaers, J. A. Steele, J. Long, Angew. Chem. Int. Ed. 2022, 61, e202204563.
- 34Q. Li, Z. Yao, E. Lee, Y. Xu, M. M. Thackeray, C. Wolverton, V. P. Dravid, J. Wu, Nat. Commun. 2019, 10, 1692.
- 35J. A. Mccaulley, J. Phys. Chem. 1993, 97, 10372–10379.
- 36A. Romanchenko, M. Likhatski, Y. Mikhlin, Minerals 2018, 8, 578.
- 37M. F. Li, K. N. Duanmu, C. Z. Wan, T. Cheng, L. Zhang, S. Dai, W. X. Chen, Z. P. Zhao, P. Li, H. L. Fei, Y. M. Zhu, R. Yu, J. Luo, K. T. Zang, Z. Y. Lin, M. N. Ding, J. Huang, H. T. Sun, J. H. Guo, X. Q. Pan, W. A. Goddard, P. Sautet, Y. Huang, X. F. Duan, Nat. Catal. 2019, 2, 495–503.
- 38J. Yang, R. Hubner, J. Zhang, H. Wan, Y. Zheng, H. Wang, H. Qi, L. He, Y. Li, A. A. Dubale, Y. Sun, Y. Liu, D. Peng, Y. Meng, Z. Zheng, J. Rossmeisl, W. Liu, Angew. Chem. Int. Ed. 2021, 60, 9590–9597.
- 39W. Huang, H. Wang, J. Zhou, J. Wang, P. N. Duchesne, D. Muir, P. Zhang, N. Han, F. Zhao, M. Zeng, J. Zhong, C. Jin, Y. Li, S. T. Lee, H. Dai, Nat. Commun. 2015, 6, 10035.
- 40B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634–641.
- 41J. Hulva, M. Meier, R. Bliem, Z. Jakub, F. Kraushofer, M. Schmid, U. Diebold, C. Franchini, G. S. Parkinson, Science 2021, 371, 375–379.
- 42L. Foppa, C. Coperet, A. Comas-Vives, J. Am. Chem. Soc. 2016, 138, 16655–16668.
- 43N. Dimakis, N. E. Navarro, T. Mion, E. S. Smotkin, J. Phys. Chem. C 2014, 118, 11711–11722.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.