Polyolefin-Based Separator with Interfacial Chemistry Regulation for Robust Potassium Metal Batteries
Long Tu
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorZhijia Zhang
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL UK
These authors contributed equally to this work.
Search for more papers by this authorZelin Zhao
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorXinyuan Xiang
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorProf. Bohua Deng
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorProf. Dan Liu
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorProf. Deyu Qu
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorProf. Haolin Tang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Junsheng Li
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Hubei Provincial Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jinping Liu
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorLong Tu
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorZhijia Zhang
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL UK
These authors contributed equally to this work.
Search for more papers by this authorZelin Zhao
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorXinyuan Xiang
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorProf. Bohua Deng
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorProf. Dan Liu
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorProf. Deyu Qu
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorProf. Haolin Tang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Junsheng Li
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Hubei Provincial Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jinping Liu
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorAbstract
Potassium metal batteries (KMBs) are ideal choices for high energy density storage system owing to the low electrochemical potential and low cost of K. However, the practical KMB applications suffer from intrinsically active K anode, which would bring serious safety concerns due to easier generation of dendrites. Herein, to explore a facile approach to tackle this issue, we propose to regulate K plating/stripping via interfacial chemistry engineering of commercial polyolefin-based separator using multiple functional units integrated in tailored metal organic framework. As a case study, the functional units of MIL-101(Cr) offer high elastic modulus, facilitate the dissociation of potassium salt, improve the K+ transfer number and homogenize the K+ flux at the electrode/electrolyte interface. Benefiting from these favorable features, uniform and stable K plating/stripping is realized with the regulated separator. Full battery assembled with the regulated separator showed ~19.9 % higher discharge capacity than that with glass fiber separator at 20 mA g−1 and much better cycling stability at high rates. The generality of our approach is validated with KMBs using different cathodes and electrolytes. We envision that the strategy to suppress dendrite formation by commercial separator surface engineering using tailor-designed functional units can be extended to other metal/metal ion batteries.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202306325-sup-0001-misc_information.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Bao, R. Wang, B. Li, C. Qian, Z. Zhang, J. Li, F. Liu, J. Mater. Chem. A 2021, 9, 20957–20984;
- 1bJ. Cui, T. G. Zhan, K. D. Zhang, D. Chen, Chin. Chem. Lett. 2017, 28, 2171–2179;
- 1cX. F. Rao, Y. T. Lou, S. W. Zhong, L. Wang, B. B. Li, Y. Xiao, W. Peng, X. H. Zhong, J. C. Huang, J. Electroanal. Chem. 2021, 897, 115499;
- 1dB. Sun, P. Li, J. Zhang, D. Wang, P. Munroe, C. Wang, P. H. L. Notten, G. Wang, Adv. Mater. 2018, 30, 1801334;
- 1eL. Fan, X. Li, Nano Energy 2018, 53, 630–642;
- 1fZ. H. Fang, L. Tu, Z. J. Zhang, J. K. Wei, Y. Y. Xiang, W. Guo, J. S. Li, Appl. Surf. Sci. 2022, 597, 153683;
- 1gZ. J. Zhang, Z. H. Fang, Y. Y. Xiang, D. Liu, Z. Z. Xie, D. Y. Qu, M. L. Sun b, H. Lin Tang, J. S. Li, Carbohydr. Polym. 2021, 255, 117469.
- 2K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 2018, 18, 459–479.
- 3
- 3aZ. Y. Zhang, M. L. Li, Y. Gao, Z. X. Wei, M. N. Zhang, C. Z. Wang, Y. Zeng, B. Zou, G. Chen, F. Du, Adv. Funct. Mater. 2018, 28, 1802684;
- 3bM. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, J. Electrochem. Soc. 2017, 164, A54–A60.
- 4
- 4aP. Liu, Y. Wang, H. Hao, S. Basu, X. Feng, Y. Xu, J. A. Boscoboinik, J. Nanda, J. Watt, D. Mitlin, Adv. Mater. 2020, 32, 2002908;
- 4bH. T. Tan, Y. Z. Feng, X. H. Rui, Y. Yu, S. M. Huang, Small Methods 2020, 4, 1900563.
- 5
- 5aC. Wei, Y. Tao, H. Fei, Y. An, Y. Tian, J. Feng, Y. Qian, Energy Storage Mater. 2020, 30, 206–227;
- 5bY. Xie, J. Hu, Z. Han, H. Fan, J. Xu, Y. Lai, Z. Zhang, Nano Res. 2020, 13, 3137–3141;
- 5cQ. Liu, M. Geng, T. Yu, L. Zhang, C. Wu, J. Liu, S. Zhao, Q. Yang, R. Song, J. Ye, F. Wang, Y. Wu, D. Xiao, Y. Chen, Nano Res. 2022, 11, 5974;
- 5dT. T. Luo, Q. Q. Zhao, Y. W. Liu, W. D. Meng, Q. Sun, L. Dai, S. Liu, L. Wang, EcoMat 2022, 4, 2567–3173;
- 5eJ. Meng, H. Zhu, Z. Xiao, X. Zhang, C. Niu, Y. Liu, G. Jiang, X. Wang, F. Qiao, X. Hong, F. Liu, Q. Pang, L. Mai, ACS Nano 2022, 16, 7291–7300;
- 5fP. Liu, D. Mitlin, Acc. Chem. Res. 2020, 53, 1161–1175;
- 5gN. Xiao, W. D. McCulloch, Y. Wu, J. Am. Chem. Soc. 2017, 139, 9475–9478.
- 6
- 6aM. Ye, J. Y. Hwang, Y. K. Sun, ACS Nano 2019, 13, 9306–9314;
- 6bX. Tang, D. Zhou, P. Li, X. Guo, B. Sun, H. Liu, K. Yan, Y. Gogotsi, G. Wang, Adv. Mater. 2020, 32, 1906739.
- 7
- 7aB. Duan, W. Wang, H. Zhao, A. Wang, M. Wang, K. Yuan, Z. Yu, Y. Yang, ECS Electrochem. Lett. 2013, 2, A47–A51;
- 7bL. Xue, H. Gao, W. Zhou, S. Xin, K. Park, Y. Li, J. B. Goodenough, Adv. Mater. 2016, 28, 9608–9612.
- 8
- 8aN. Xiao, J. Zheng, G. Gourdin, L. Schkeryantz, Y. Wu, ACS Appl. Mater. Interfaces 2019, 11, 16571–16577;
- 8bP. Li, T. Xu, P. Ding, J. Deng, C. Zha, Y. Wu, Y. Wang, Y. Li, Energy Storage Mater. 2018, 15, 8–13.
- 9
- 9aJ. Wang, Y. He, Q. Wu, Y. Zhang, Z. Li, Z. Liu, S. Huo, J. Dong, D. Zeng, H. Cheng, Sci. Rep. 2019, 9, 19320;
- 9bR. Pan, R. Sun, Z. Wang, J. Lindh, K. Edström, M. Strømme, L. Nyholm, Energy Storage Mater. 2019, 21, 464–473;
- 9cW. Wang, Y. Yuan, J. Wang, Y. Zhang, C. Liao, X. Mu, H. Sheng, Y. Kan, L. Song, Y. Hu, ACS Appl. Energ. Mater. 2019, 2, 4167–4174;
- 9dX. W. Wu, S. L. Cui, S. Liu, G. R. Li, X. P. Gao, ACS Appl. Mater. Interfaces 2021, 13, 6249–6256;
- 9eJ. Liang, Q. Y. Chen, X. B. Liao, P. C. Yao, B. Zhu, G. X. Lv, X. Y. Wang, X. Chen, J. Zhu, Angew. Chem. Int. Ed. 2020, 59, 6561–6566;
- 9fD. Zhou, X. Tang, X. Guo, P. Li, D. Shanmukaraj, H. Liu, X. C. Gao, Y. Z. Wang, T. Rojo, M. Armand, G. X. Wang, Angew. Chem. Int. Ed. 2020, 59, 16725–16734;
- 9gH. Mao, W. Yu, Z. Y. Cai, G. X. Liu, L. M. Liu, R. Wen, Y. Q. Su, H. R. Kou, K. Xi, B. Q. Li, H. Y. Zhao, X. Y. Da, H. Wu, W. Yan, S. J. Ding, Angew. Chem. Int. Ed. 2021, 60, 19306–19313;
- 9hH. Y. Huo, M. Jiang, B. Mogwitz, J. Sann, Y. Yusim, T. T. Zuo, Y. Moryson, P. Minnmann, F. H. Richter, C. V. Singh, J. Janek, Angew. Chem. Int. Ed. 2023, 62, e202218044;
- 9iQ. T. Ma, X. W. Sun, P. Liu, Y. Y. Xia, X. J. Liu, J. Y. Luo, Angew. Chem. Int. Ed. 2019, 58, 6200–6206;
- 9jJ. D. Huang, J. D. Liu, J. He, M. G. Wu, S. H. Qi, H. P. Wang, F. Li, J. M. Ma, Angew. Chem. Int. Ed. 2021, 60, 20717–20722.
- 10T. H. Wang, Q. H. Liu, J. Zhou, X. H. Wang, B. A. Lu, Adv. Energy Mater. 2022, 12, 2202357.
- 11P. Liu, H. Hao, H. Celio, J. Cui, M. Ren, Y. Wang, H. Dong, A. R. Chowdhury, T. Hutter, F. A. Perras, J. Nanda, J. Watt, D. Mitlin, Adv. Mater. 2022, 34, 2105855.
- 12
- 12aW. Xu, W. Li, L. Lu, W. Zhang, J. Kang, B. J. Li, J. Solid State Chem. 2019, 279, 120950;
- 12bN. Tian, Q. M. Jia, H. Y. Su, Y. F. Zhi, A. H. Ma, J. Porous Mater. 2016, 23, 1269–1278.
- 13Y. Tan, Z. Sun, H. Meng, Y. Han, J. Wu, J. Xu, Y. Xu, X. Zhang, Powder Technol. 2019, 356, 162–169.
- 14P. N. Le Pham, V. Gabaudan, A. Boulaoued, G. Åvall, F. Salles, P. Johansson, L. Monconduit, L. Stievano, Energy Storage Mater. 2022, 45, 291–300.
10.1016/j.ensm.2021.11.046 Google Scholar
- 15
- 15aW. Zhang, W. K. Pang, V. Sencadas, Z. Guo, Joule 2018, 2, 1534;
- 15bY. Li, L. Zhang, S. Liu, X. Wang, D. Xie, X. Xia, C. Gu, J. Tu, Nano Energy 2019, 62, 367;
- 15cY. Y. Xie, J. X. Hu, Z. X. Han, H. L. Fan, J. Y. Xu, Y. Q. Lai, Z. A. Zhang, Nano Res. 2020, 13, 3137–3141;
- 15dL. Y. Zhang, X. H. Xia, Y. Zhong, D. Xie, S. F. Liu, X. L. Wang, J. P. Tu, Adv. Mater. 2018, 30, 180401;
- 15eQ. Yang, Y. Ding, G. He, Chem. Commun. 2020, 56, 3512;
- 15fX. Tang, D. Zhou, P. Li, X. Guo, B. Sun, H. Liu, K. Yan, Y. Gogotsi, G. Wang, Adv. Mater. 2020, 32, 1906739;
- 15gY. Gu, W. W. Wang, Y. J. Li, Q. H. Wu, S. Tang, J. W. Yan, M. S. Zheng, D. Y. Wu, C. H. Fan, W. Q. Hu, Z. B. Chen, Y. Fang, Q. H. Zhang, Q. F. Dong, B. W. Mao, Nat. Commun. 2018, 9, 1339;
- 15hP. Liu, Y. Wang, Q. Gu, J. Nanda, J. Watt, D. Mitlin, Adv. Mater. 2020, 32, 1906735.
- 16
- 16aE. Peled, S. Menkin, J. Electrochem. Soc. 2017, 164, A1703;
- 16bW. Liu, P. Liu, D. Mitlin, Adv. Energy Mater. 2020, 10, 2002297.
- 17
- 17aH. Wang, J. Dong, Q. Guo, W. Xu, H. Zhang, K. C. Lau, Y. Wei, J. Hu, D. Zhai, F. Kang, Energy Storage Mater. 2021, 42, 526–532;
- 17bJ. Hu, H. Wang, S. Wang, Y. Lei, L. Qin, X. Li, D. Zhai, B. Li, F. Kang, Energy Storage Mater. 2021, 36, 91–98.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.