Dual Atom Catalysts for Energy and Environmental Applications
Dr. Tiancheng Pu
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
These authors contributed equally to this work.
Search for more papers by this authorJiaqi Ding
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
These authors contributed equally to this work.
Search for more papers by this authorFanxing Zhang
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ke Wang
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorNing Cao
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorCorresponding Author
Prof. Emiel J. M. Hensen
Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Search for more papers by this authorCorresponding Author
Prof. Pengfei Xie
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorDr. Tiancheng Pu
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
These authors contributed equally to this work.
Search for more papers by this authorJiaqi Ding
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
These authors contributed equally to this work.
Search for more papers by this authorFanxing Zhang
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ke Wang
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorNing Cao
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorCorresponding Author
Prof. Emiel J. M. Hensen
Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Search for more papers by this authorCorresponding Author
Prof. Pengfei Xie
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorAbstract
The pursuit of high metal utilization in heterogeneous catalysis has triggered the burgeoning interest of various atomically dispersed catalysts. Our aim in this review is to assess key recent findings in the synthesis, characterization, structure-property relationship and computational studies of dual-atom catalysts (DACs), which cover the full spectrum of applications in thermocatalysis, electrocatalysis and photocatalysis. In particular, combination of qualitative and quantitative characterization with cooperation with DFT insights, synergies and superiorities of DACs compare to counterparts, high-throughput catalyst exploration and screening with machine-learning algorithms are highlighted. Undoubtably, it would be wise to expect more fascinating developments in the field of DACs as tunable catalysts.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1J. A. Dumesic, G. W. Huber, M. Boudart, Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, 2008.
- 2X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748.
- 3L. Li, K. Yuan, Y. Chen, Acc. Mater. Res. 2022, 3, 584–596.
- 4J. F. Wilkinson, R. Whittenbury, J. F. Wilkinson, J. Gen. Microbiol. 2017, 61, 205–218.
- 5C. E. Tinberg, S. J. Lippard, Acc. Chem. Res. 2011, 44, 280–288.
- 6A. L. Feig, S. J. Lippard, Chem. Rev. 1994, 94, 759–805.
- 7R. A. Himes, K. Barnese, K. D. Karlin, Angew. Chem. Int. Ed. 2010, 49, 6714–6716.
- 8W. B. Tolman, Angew. Chem. Int. Ed. 2010, 49, 1018–1024.
- 9R. P. Houser, J. A. Halfen, V. G. Young, W. B. Tolman, N. J. Blackburn, J. Am. Chem. Soc. 1995, 117, 10745–10746.
- 10S. Mahapatra, J. A. Halfen, E. C. Wilkinson, G. Pan, C. J. Cramer, L. Que, W. B. Tolman, J. Am. Chem. Soc. 1995, 117, 8865–8866.
- 11R. R. Burch, E. L. Muetterties, R. G. Teller, J. M. Williams, J. Am. Chem. Soc. 1982, 104, 4257–4258.
- 12M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. Mikuriya, S. Kagawa, J. Chem. Soc. Chem. Commun. 1986, 1272.
- 13M. H. Groothaert, J. A. Van Bokhoven, A. A. Battiston, B. M. Weckhuysen, R. A. Schoonheydt, J. Am. Chem. Soc. 2003, 125, 7629–7640.
- 14M.-L. Tsai, R. G. Hadt, P. Vanelderen, B. F. Sels, R. A. Schoonheydt, E. I. Solomon, J. Am. Chem. Soc. 2014, 136, 3522–3529.
- 15G. Li, E. A. Pidko, I. A. W. Filot, R. A. Van Santen, C. Li, E. J. M. Hensen, J. Catal. 2013, 308, 386–397.
- 16G. Li, E. A. Pidko, R. A. Van Santen, C. Li, E. J. M. Hensen, J. Phys. Chem. C 2013, 117, 413–426.
- 17D. K. Böhme, H. Schwarz, Angew. Chem. Int. Ed. 2005, 44, 2336–2354.
- 18B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634–641.
- 19D. Yardimci, P. Serna, B. C. Gates, Chem. Eur. J. 2013, 19, 1235–1245.
- 20J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang, Z. Li, W. Chen, C. Jia, T. Yao, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 17281–17284.
- 21X. Liang, N. Fu, S. Yao, Z. Li, Y. Li, J. Am. Chem. Soc. 2022, 144, 18155–18174.
- 22T. He, A. R. P. Santiago, Y. Kong, M. A. Ahsan, R. Luque, A. Du, H. Pan, Small 2022, 18, 2106091.
- 23W. Zhang, Y. Chao, W. Zhang, J. Zhou, F. Lv, K. Wang, F. Lin, H. Luo, J. Li, M. Tong, E. Wang, S. Guo, Adv. Mater. 2021, 33, 2102576.
- 24R. Li, D. Wang, Adv. Energy Mater. 2022, 12, 2103564.
- 25E. Guan, J. Ciston, S. R. Bare, R. C. Runnebaum, A. Katz, A. Kulkarni, C. X. Kronawitter, B. C. Gates, ACS Catal. 2020, 10, 9065–9085.
- 26J. Gu, M. Jian, L. Huang, Z. Sun, A. Li, Y. Pan, J. Yang, W. Wen, W. Zhou, Y. Lin, H. J. Wang, X. Liu, L. Wang, X. Shi, X. Huang, L. Cao, S. Chen, X. Zheng, H. Pan, J. Zhu, S. Wei, W. X. Li, J. Lu, Nat. Nanotechnol. 2021, 16, 1141–1149.
- 27T. Gan, Y. Liu, Q. He, H. Zhang, X. He, H. Ji, ACS Sustainable Chem. Eng. 2020, 8, 8692–8699.
- 28Y. X. Zhang, S. Zhang, H. Huang, X. Liu, B. Li, Y. Lee, X. Wang, Y. Bai, M. Sun, Y. Wu, S. Gong, X. Liu, Z. Zhuang, T. Tan, Z. Niu, J. Am. Chem. Soc. 2023, 145, 4819–4827.
- 29E. Guan, L. Debefve, M. Vasiliu, S. Zhang, D. A. Dixon, B. C. Gates, ACS Catal. 2019, 9, 9545–9553.
- 30I. Ro, J. Qi, S. Lee, M. Xu, X. Yan, Z. Xie, G. Zakem, A. Morales, J. G. Chen, X. Pan, D. G. Vlachos, S. Caratzoulas, P. Christopher, Nature 2022, 609, 287–292.
- 31S. Tian, B. Wang, W. Gong, Z. He, Q. Xu, W. Chen, Q. Zhang, Y. Zhu, J. Yang, Q. Fu, C. Chen, Y. Bu, L. Gu, X. Sun, H. Zhao, D. Wang, Y. Li, Nat. Commun. 2021, 12, 3181.
- 32S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen, J. Zhang, W. C. Cheong, R. Yu, L. Gu, J. Dong, J. Luo, C. Chen, Q. Peng, C. Draxl, D. Wang, Y. Li, Nat. Commun. 2018, 9, 2353.
- 33P. Xie, J. Ding, Z. Yao, T. Pu, P. Zhang, Z. Huang, C. Wang, J. Zhang, N. Zecher-Freeman, H. Zong, D. Yuan, S. Deng, R. Shahbazian-Yassar, C. Wang, Nat. Commun. 2022, 13, 1375.
- 34S. Chen, B. Gong, J. Gu, Y. Lin, B. Yang, Q. Gu, R. Jin, Q. Liu, W. Ying, X. Shi, W. Xu, L. Cai, Y. Li, Z. Sun, S. Wei, W. Zhang, J. Lu, Angew. Chem. Int. Ed. 2022, 61, e202211919.
- 35P. Da Costa, B. Modén, G. D. Meitzner, D. K. Lee, E. Iglesia, Phys. Chem. Chem. Phys. 2002, 4, 4590–4601.
- 36T. Beutel, J. Sa, J. Phys. Chem. 1996, 100, 845–851.
- 37J. Zheng, J. Ye, M. A. Ortuño, J. L. Fulton, O. Y. Gutiérrez, D. M. Camaioni, R. K. Motkuri, Z. Li, T. E. Webber, B. L. Mehdi, N. D. Browning, R. L. Penn, O. K. Farha, J. T. Hupp, D. G. Truhlar, C. J. Cramer, J. A. Lercher, J. Am. Chem. Soc. 2019, 141, 9292–9304.
- 38J. Shan, C. Ye, S. Chen, T. Sun, Y. Jiao, L. Liu, C. Zhu, L. Song, Y. Han, M. Jaroniec, Y. Zhu, Y. Zheng, S. Z. Qiao, J. Am. Chem. Soc. 2021, 143, 5201–5211.
- 39H. Fei, J. Dong, D. Chen, T. Hu, X. Duan, I. Shakir, Y. Huang, X. Duan, Chem. Soc. Rev. 2019, 48, 5207–5241.
- 40H. Wang, X. Wang, J. Pan, L. Zhang, M. Zhao, J. Xu, B. Liu, W. Shi, S. Song, H. Zhang, Angew. Chem. Int. Ed. 2021, 60, 23154–23158.
- 41H. Chen, Y. Zhang, Q. He, H. Zhang, S. Xu, X. He, H. Ji, J. Mater. Chem. A 2020, 8, 2364–2368.
- 42G. F. Han, F. Li, A. I. Rykov, Y. K. Im, S. Y. Yu, J. P. Jeon, S. J. Kim, W. Zhou, R. Ge, Z. Ao, T. J. Shin, J. Wang, H. Y. Jeong, J. B. Baek, Nat. Nanotechnol. 2022, 17, 403–407.
- 43J. Jones, H. F. Xiong, A. T. Delariva, E. J. Peterson, H. Pham, S. R. Challa, G. S. Qi, S. Oh, M. H. Wiebenga, X. I. Pereira Hernandez, Y. Wang, A. K. Datye, Science 2016, 353, 150–154.
- 44P. Xie, T. Pu, A. Nie, S. Hwang, S. C. Purdy, W. Yu, D. Su, J. T. Miller, C. Wang, ACS Catal. 2018, 8, 4044–4048.
- 45X. Zhou, K. Han, K. Li, J. Pan, X. Wang, W. Shi, S. Song, H. Zhang, Adv. Mater. 2022, 34, 2201859.
- 46T. Pu, J. Ding, X. Tang, K. Yang, K. Wang, B. Huang, S. Dai, Y. He, Y. Shi, P. Xie, ACS Appl. Mater. Interfaces 2022, 14, 43141–43150.
- 47M. Meier, J. Hulva, Z. Jakub, F. Kraushofer, M. Bobić, R. Bliem, M. Setvin, M. Schmid, U. Diebold, C. Franchini, G. S. Parkinson, Sci. Adv. 2022, 8, eabn4580.
- 48Z. Zeng, L. Y. Gan, H. Bin Yang, X. Su, J. Gao, W. Liu, H. Matsumoto, J. Gong, J. Zhang, W. Cai, Z. Zhang, Y. Yan, B. Liu, P. Chen, Nat. Commun. 2021, 12, 4088.
- 49P. A. Crozier, R. Wang, R. Sharma, Ultramicroscopy 2008, 108, 1432–1440.
- 50R. Rana, F. D. Vila, A. R. Kulkarni, S. R. Bare, ACS Catal. 2022, 12, 13813–13830.
- 51P. Xie, T. Pu, G. Aranovich, J. Guo, M. Donohue, A. Kulkarni, C. Wang, Nat. Catal. 2021, 4, 144–156.
- 52J. Wang, R. You, C. Zhao, W. Zhang, W. Liu, X.-P. Fu, Y. Li, F. Zhou, X. Zheng, Q. Xu, T. Yao, C.-J. Jia, Y.-G. Wang, W. Huang, Y. Wu, ACS Catal. 2020, 10, 2754–2761.
- 53L. Sun, Y. Wang, C. Wang, Z. Xie, N. Guan, L. Li, Chem 2021, 7, 1557–1568.
- 54R. Kydd, W. Y. Teoh, K. Wong, Y. Wang, J. Scott, Q. H. Zeng, A. B. Yu, J. Zou, R. Amal, Adv. Funct. Mater. 2009, 19, 369–377.
- 55F. Huang, M. Peng, Y. Chen, X. Cai, X. Qin, N. Wang, D. Xiao, L. Jin, G. Wang, X. D. Wen, H. Liu, D. Ma, J. Am. Chem. Soc. 2022, 144, 18485–18493.
- 56J. Fu, J. Dong, R. Si, K. Sun, J. Zhang, M. Li, N. Yu, B. Zhang, M. G. Humphrey, Q. Fu, J. Huang, ACS Catal. 2021, 11, 1952–1961.
- 57P. J. Smeets, B. F. Sels, R. M. van Teeffelen, H. Leeman, E. J. M. Hensen, R. A. Schoonheydt, J. Catal. 2008, 256, 183–191.
- 58S. H. Krishna, A. Goswami, Y. Wang, C. B. Jones, D. P. Dean, J. T. Miller, W. F. Schneider, R. Gounder, Nat. Catal. 2023, 6, 276–285.
- 59A. Caballero, P. J. Pérez, Chem. Soc. Rev. 2013, 42, 8809–8820.
- 60J. Zhu, M. Xiao, D. Ren, R. Gao, X. Liu, Z. Zhang, D. Luo, W. Xing, D. Su, A. Yu, Z. Chen, J. Am. Chem. Soc. 2022, 144, 9661–9671.
- 61N. Zhang, X. Zhang, Y. Kang, C. Ye, R. Jin, H. Yan, R. Lin, J. Yang, Q. Xu, Y. Wang, Q. Zhang, L. Gu, L. Liu, W. Song, J. Liu, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 13388–13393.
- 62Q. Hao, H. Zhong, J. Wang, K. Liu, J. Yan, Z. Ren, N. Zhou, X. Zhao, H. Zhang, D. Liu, X. Liu, L. Chen, J. Luo, X. Zhang, Nat. Synth. 2022, 1, 719–728.
- 63X. Lv, W. Wei, B. Huang, Y. Dai, T. Frauenheim, Nano Lett. 2021, 21, 1871–1878.
- 64L. Pan, J. Wang, F. Lu, Q. Liu, Y. Gao, Y. Wang, J. Jiang, C. Sun, J. Wang, X. Wang, Angew. Chem. Int. Ed. 2023, 62, e202216835.
- 65A. Kumar, K. Sun, X. Duan, S. Tian, X. Sun, Chem. Mater. 2022, 34, 5598–5606.
- 66C. Paolucci, I. Khurana, A. A. Parekh, S. Li, A. J. Shih, H. Li, J. R. Di Iorio, J. D. Albarracin-Caballero, A. Yezerets, J. T. Miller, W. N. Delgass, F. H. Ribeiro, W. F. Schneider, R. Gounder, Science 2017, 357, 898–903.
- 67H. Liu, H. Rong, J. Zhang, ChemSusChem 2022, 15, e202200498.
- 68Y. Xie, X. Chen, K. Sun, J. Zhang, W.-H. Lai, H. Liu, G. Wang, Angew. Chem. Int. Ed. 2023, 62, e202301833.
- 69W. Zhao, C. Luo, Y. Lin, G. B. Wang, H. M. Chen, P. Kuang, J. Yu, ACS Catal. 2022, 12, 5540–5548.
- 70W. Wan, Y. Zhao, S. Wei, C. A. Triana, J. Li, A. Arcifa, C. S. Allen, R. Cao, G. R. Patzke, Nat. Commun. 2021, 12, 5589.
- 71L. Li, Y. Li, T. Zhao, R. Huang, X. Cao, T. Fan, Y. Wen, J. Electrochem. Soc. 2022, 169, 026524.
- 72J. Zhang, L. Zhang, J. Liu, C. Zhong, Y. Tu, P. Li, L. Du, S. Chen, Z. Cui, Nat. Commun. 2022, 13, 5497.
- 73X. Zheng, J. Yang, P. Li, Z. Jiang, P. Zhu, Q. Wang, J. Wu, E. Zhang, W. Sun, S. Dou, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202217449.
- 74B. Yang, H. Li, Z. Zhang, K. Xiao, M. Yang, F. Zhang, M. Wang, X. Guo, Q. Li, W. Fu, R. Si, L. Wang, H. Chen, Chem. Eng. J. 2022, 427, 131719.
- 75K. Wang, M. Cheng, F. Xia, N. Cao, F. Zhang, W. Ni, X. Yue, K. Yan, Y. He, Y. Shi, W. Dai, P. Xie, Small 2023, 19, 2207581.
- 76J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Adv. Mater. 2017, 29, 1601694.
- 77Y. Feng, Y. Wang, K. Wang, C. Ban, Y. Duan, J. Meng, X. Liu, J. Ma, J. Dai, D. Yu, C. Wang, L. Gan, X. Zhou, Nano Energy 2022, 103, 107853.
- 78T. Wei, P. Ding, T. Wang, L.-M. Liu, X. An, X. Yu, ACS Catal. 2021, 11, 14669–14676.
- 79C. Wang, K. Wang, Y. Feng, C. Li, X. Zhou, L. Gan, Y. Feng, H. Zhou, B. Zhang, X. Qu, H. Li, J. Li, A. Li, Y. Sun, S. Zhang, G. Yang, Y. Guo, S. Yang, T. Zhou, F. Dong, K. Zheng, L. Wang, J. Huang, Z. Zhang, X. Han, Adv. Mater. 2021, 33, 2003327.
- 80J. Wang, E. Kim, D. P. Kumar, A. P. Rangappa, Y. Kim, Y. Zhang, T. K. Kim, Angew. Chem. Int. Ed. 2022, 61, e202113044.
- 81H. Ou, S. Ning, P. Zhu, S. Chen, A. Han, Q. Kang, Z. Hu, J. Ye, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2022, 61, e202206579.
- 82H. Shi, H. Wang, Y. Zhou, J. Li, P. Zhai, X. Li, G. G. Gurzadyan, J. Hou, H. Yang, X. Guo, Angew. Chem. Int. Ed. 2022, 61, e202208904.
- 83G. Wang, R. Huang, J. Zhang, J. Mao, D. Wang, Y. Li, Adv. Mater. 2021, 33, 2105904.
- 84M. Liu, H. Xia, W. Yang, X. Liu, J. Xiang, X. Wang, L. Hu, F. Lu, Appl. Catal. B 2022, 301, 120765.
- 85F. Rehman, S. Kwon, C. B. Musgrave, M. Tamtaji, W. A. Goddard, Z. Luo, Nano Energy 2022, 103, 107866.
- 86S. Wang, L. Li, J. Li, C. Yuan, Y. Kang, K. S. Hui, J. Zhang, F. Bin, X. Fan, F. Chen, K. N. Hui, J. Phys. Chem. C 2021, 125, 7155–7165.
- 87C. Jia, Q. Wang, J. Yang, K. Ye, X. Li, W. Zhong, H. Shen, E. Sharman, Y. Luo, J. Jiang, ACS Catal. 2022, 12, 3420–3429.
- 88M. G. Mavros, J. J. Shepherd, T. Tsuchimochi, A. R. McIsaac, T. Van Voorhis, J. Phys. Chem. C 2017, 121, 15665–15674.
- 89T. Mou, H. S. Pillai, S. Wang, M. Wan, X. Han, N. M. Schweitzer, F. Che, H. Xin, Nat. Catal. 2023, 6, 122–136.
- 90P. Schlexer Lamoureux, K. T. Winther, J. A. Garrido Torres, V. Streibel, M. Zhao, M. Bajdich, F. Abild-Pedersen, T. Bligaard, ChemCatChem 2019, 11, 3581–3601.
- 91G. L. W. Hart, T. Mueller, C. Toher, S. Curtarolo, Nat. Rev. Mater. 2021, 6, 730–755.
- 92X. Wan, Z. Zhang, H. Niu, Y. Yin, C. Kuai, J. Wang, C. Shao, Y. Guo, J. Phys. Chem. Lett. 2021, 12, 6111–6118.
- 93X. Zhu, J. Yan, M. Gu, T. Liu, Y. Dai, Y. Gu, Y. Li, J. Phys. Chem. Lett. 2019, 10, 7760–7766.
- 94D. Behrendt, S. Banerjee, C. Clark, A. M. Rappe, J. Am. Chem. Soc. 2023, 145, 4730–4735.
- 95M. Sun, T. Wu, A. W. Dougherty, M. Lam, B. Huang, Y. Li, C.-H. Yan, Adv. Energy Mater. 2021, 11, 2003796.
- 96O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schütt, A. Tkatchenko, K. R. Müller, Chem. Rev. 2021, 121, 10142–10186.
- 97L. Han, H. Cheng, W. Liu, H. Li, P. Ou, R. Lin, H. T. Wang, C. W. Pao, A. R. Head, C. H. Wang, X. Tong, C. J. Sun, W. F. Pong, J. Luo, J. C. Zheng, H. L. Xin, Nat. Mater. 2022, 21, 681–688.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.