Chemical Enhancement and Quenching in Single-Molecule Tip-Enhanced Raman Spectroscopy
Dr. Ben Yang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Gong Chen
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Atif Ghafoor
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorYu-Fan Zhang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorDr. Xian-Biao Zhang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorHang Li
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorXiao-Ru Dong
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorRui-Pu Wang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorProf. Yang Zhang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026 China
Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
Search for more papers by this authorProf. Yao Zhang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026 China
Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
Search for more papers by this authorCorresponding Author
Prof. Zhen-Chao Dong
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026 China
Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
Search for more papers by this authorDr. Ben Yang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Gong Chen
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Atif Ghafoor
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorYu-Fan Zhang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorDr. Xian-Biao Zhang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorHang Li
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorXiao-Ru Dong
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorRui-Pu Wang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorProf. Yang Zhang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026 China
Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
Search for more papers by this authorProf. Yao Zhang
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026 China
Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
Search for more papers by this authorCorresponding Author
Prof. Zhen-Chao Dong
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026 China
School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026 China
Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088 China
Search for more papers by this authorAbstract
Despite intensive research in surface enhanced Raman spectroscopy (SERS), the influence mechanism of chemical effects on Raman signals remains elusive. Here, we investigate such chemical effects through tip-enhanced Raman spectroscopy (TERS) of a single planar ZnPc molecule with varying but controlled contact environments. TERS signals are found dramatically enhanced upon making a tip–molecule point contact. A combined physico-chemical mechanism is proposed to explain such an enhancement via the generation of a ground-state charge-transfer induced vertical Raman polarizability that is further enhanced by the strong vertical plasmonic field in the nanocavity. In contrast, TERS signals from ZnPc chemisorbed flatly on substrates are found strongly quenched, which is rationalized by the Raman polarizability screening effect induced by interfacial dynamic charge transfer. Our results provide deep insights into the understanding of the chemical effects in TERS/SERS enhancement and quenching.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202218799-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, J. G. Hou, Nature 2013, 498, 82–86.
- 2J. Steidtner, B. Pettinger, Phys. Rev. Lett. 2008, 100, 236101.
- 3R. Zhang, X. B. Zhang, H. F. Wang, Y. Zhang, S. Jiang, C. R. Hu, Y. Zhang, Y. Luo, Z. C. Dong, Angew. Chem. Int. Ed. 2017, 56, 5561–5564; Angew. Chem. 2017, 129, 5653–5656.
- 4Y. Zhang, B. Yang, A. Ghafoor, Y. Zhang, Y. F. Zhang, R. P. Wang, J. L. Yang, Y. Luo, Z. C. Dong, J. G. Hou, Natl. Sci. Rev. 2019, 6, 1169–1175.
- 5J. Lee, K. T. Crampton, N. Tallarida, V. A. Apkarian, Nature 2019, 568, 78–82.
- 6J. M. Gottfried, Angew. Chem. Int. Ed. 2013, 52, 11202–11204; Angew. Chem. 2013, 125, 11410–11412.
- 7E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A.-I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, R. P. Van Duyne, Chem. Rev. 2017, 117, 4961–4982.
- 8M. Richard-Lacroix, Y. Zhang, Z. C. Dong, V. Deckert, Chem. Soc. Rev. 2017, 46, 3922–3944.
- 9X. Wang, S. C. Huang, S. Hu, S. Yan, B. Ren, Nat. Rev. Phys. 2020, 2, 253–271.
- 10L. F. Li, J. F. Schultz, S. Mahapatra, Z. Y. Lu, X. Zhang, N. Jiang, Nat. Commun. 2022, 13, 1796.
- 11S. Mahapatra, J. F. Schultz, L. F. Li, X. Zhang, N. Jiang, J. Am. Chem. Soc. 2022, 144, 2051–2055.
- 12S. Y. Liu, M. Wolf, T. Kumagai, Phys. Rev. Lett. 2022, 128, 206803.
- 13M. T. Sun, Y. R. Fang, Z. L. Yang, H. X. Xu, Phys. Chem. Chem. Phys. 2009, 11, 9412–9419.
- 14D. L. Jeanmaire, R. P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20.
- 15M. G. Albrecht, J. A. Creighton, J. Am. Chem. Soc. 1977, 99, 5215–5217.
- 16M. Moskovits, Rev. Mod. Phys. 1985, 57, 783.
- 17S. M. Nie, S. R. Emory, Science 1997, 275, 1102–1106.
- 18K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, Phys. Rev. Lett. 1997, 78, 1667.
- 19L. Jensen, C. M. Aikens, G. C. Schatz, Chem. Soc. Rev. 2008, 37, 1061–1073.
- 20S. Cong, X. H. Liu, Y. X. Jiang, W. Zhang, Z. G. Zhao, The Innovation 2020, 1, 100051.
- 21A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, J. Phys. Condens. Matter 1992, 4, 1143–1212.
- 22A. Campion, J. E. Ivanecky III, C. M. Child, M. Foster, J. Am. Chem. Soc. 1995, 117, 11807–11808.
- 23L. L. Zhao, L. Jensen, G. C. Schatz, Nano Lett. 2006, 6, 1229–1234.
- 24D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. Moerner, J. Chem. Phys. 2006, 124, 061101.
- 25S. M. Morton, L. Jensen, J. Am. Chem. Soc. 2009, 131, 4090–4098.
- 26M. Oren, M. Galperin, A. Nitzan, Phys. Rev. B 2012, 85, 115435.
- 27E. C. Le Ru, P. G. Etchegoin, MRS Bull. 2013, 38, 631–640.
- 28N. Valley, N. Greeneltch, R. P. Van Duyne, G. C. Schatz, J. Phys. Chem. Lett. 2013, 4, 2599–2604.
- 29R. L. Birke, J. R. Lombardi, W. A. Saidi, P. Norman, J. Phys. Chem. C 2016, 120, 20721–20735.
- 30M. Yilmaz, E. Babur, M. Ozdemir, R. L. Gieseking, Y. Dede, U. Tamer, G. C. Schatz, A. Facchetti, H. Usta, G. Demirel, Nat. Mater. 2017, 16, 918–924.
- 31C. Zhan, X. J. Chen, J. Yi, J. F. Li, D. Y. Wu, Z. Q. Tian, Nat. Chem. Rev. 2018, 2, 216–230.
- 32J. Langer, et al., ACS Nano 2020, 14, 28–117.
- 33R. J. Clark, T. J. Dines, Angew. Chem. Int. Ed. Engl. 1986, 25, 131–158; Angew. Chem. 1986, 98, 131–160.
- 34F. R. Aussenegg, M. E. Lippitsch, Chem. Phys. Lett. 1978, 59, 214–216.
- 35L. L. Zhao, L. Jensen, G. C. Schatz, J. Am. Chem. Soc. 2006, 128, 2911–2919.
- 36A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, J. B. Neaton, Phys. Rev. Lett. 2011, 106, 083003.
- 37R. L. Gieseking, J. Lee, N. Tallarida, V. A. Apkarian, G. C. Schatz, J. Phys. Chem. Lett. 2018, 9, 3074–3080.
- 38B. Cirera, Y. Litman, C. F. Lin, A. Akkoush, A. Hammud, M. Wolf, M. Rossi, T. Kumagai, Nano Lett. 2022, 22, 2170–2176.
- 39S. Y. Liu, B. Cirera, Y. Sun, I. Hamada, M. Muller, A. Hammud, M. Wolf, T. Kumagai, Nano Lett. 2020, 20, 5879–5884.
- 40R. B. Jaculbia, H. Imada, K. Miwa, T. Iwasa, M. Takenaka, B. Yang, E. Kazuma, N. Hayazawa, T. Taketsugu, Y. Kim, Nat. Nanotechnol. 2020, 15, 105–110.
- 41P. Kambhampati, A. Campion, Surf. Sci. 1999, 427–428, 115–125.
- 42B. Liu, B. Thielert, A. Reutter, R. Stosch, P. Lemmens, J. Phys. Chem. C 2019, 123, 19119–19124.
- 43B. Yang, G. Chen, A. Ghafoor, Y. F. Zhang, Y. Zhang, Y. Zhang, Y. Luo, J. L. Yang, V. Sandoghdar, J. Aizpurua, Z. C. Dong, J. G. Hou, Nat. Photonics 2020, 14, 693–699.
- 44J. F. Arenas, M. S. Woolley, J. C. Otero, J. I. Marcos, J. Phys. Chem. 1996, 100, 3199–3206.
- 45Y. F. Huang, D. Y. Wu, H. P. Zhu, L. B. Zhao, G. K. Liu, B. Ren, Z. Q. Tian, Phys. Chem. Chem. Phys. 2012, 14, 8485–8497.
- 46S. Afroosheh, A. T. Zayak, J. Phys. Chem. C 2020, 124, 24723–24730.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.