An Amphiphilic Molecule-Regulated Core-Shell-Solvation Electrolyte for Li-Metal Batteries at Ultra-Low Temperature
Junkai Shi
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
These authors contributed equally to this work.
Contribution: Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorChao Xu
MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
These authors contributed equally to this work.
Contribution: Methodology (lead), Software (lead)
Search for more papers by this authorJiawei Lai
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorZhongliang Li
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Investigation (equal), Software (equal), Validation (equal)
Search for more papers by this authorYuping Zhang
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Data curation (lead), Formal analysis (equal), Investigation (supporting)
Search for more papers by this authorYan Liu
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Investigation (equal), Methodology (equal), Software (equal)
Search for more papers by this authorCorresponding Author
Kui Ding
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Conceptualization (equal), Funding acquisition (supporting), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Yue-Peng Cai
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Funding acquisition (lead), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorRui Shang
Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-8654 Japan
Contribution: Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Qifeng Zheng
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorJunkai Shi
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
These authors contributed equally to this work.
Contribution: Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorChao Xu
MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
These authors contributed equally to this work.
Contribution: Methodology (lead), Software (lead)
Search for more papers by this authorJiawei Lai
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorZhongliang Li
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Investigation (equal), Software (equal), Validation (equal)
Search for more papers by this authorYuping Zhang
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Data curation (lead), Formal analysis (equal), Investigation (supporting)
Search for more papers by this authorYan Liu
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Investigation (equal), Methodology (equal), Software (equal)
Search for more papers by this authorCorresponding Author
Kui Ding
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Conceptualization (equal), Funding acquisition (supporting), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Yue-Peng Cai
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Funding acquisition (lead), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorRui Shang
Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-8654 Japan
Contribution: Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Qifeng Zheng
School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Lithium metal batteries hold great promise for promoting energy density and operating at low temperatures, yet they still suffer from insufficient Li compatibility and slow kinetic, especially at ultra-low temperatures. Herein, we rationally design and synthesize a new amphiphilic solvent, 1,1,2,2-tetrafluoro-3-methoxypropane, for use in battery electrolytes. The lithiophilic segment is readily to solvate Li+ to induce self-assembly of the electrolyte solution to form a peculiar core-shell-solvation structure. Such unique solvation structure not only largely improves the ionic conductivity to allow fast Li+ transport and lower the desolvation energy to enable facile desolvation, but also leads to the formation of a highly robust and conductive inorganic SEI. The resulting electrolyte demonstrates high Li efficiency and superior cycling stability from room temperature to −40 °C at high current densities. Meanwhile, anode-free high-voltage cell retains 87 % capacity after 100 cycles.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202218151-sup-0001-misc_information.pdf3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J.-Y. Hwang, S.-J. Park, C. S. Yoon, Y.-K. Sun, Energy Environ. Sci. 2019, 12, 2174–2184.
- 2L. Yu, L. Yu, Q. Liu, T. Meng, S. Wang, X. Hu, Adv. Funct. Mater. 2022, 32, 2110653.
- 3W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 2014, 7, 513–537.
- 4C. Yan, Y. X. Yao, X. Chen, X. B. Cheng, X. Q. Zhang, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 14055–14059; Angew. Chem. 2018, 130, 14251–14255.
- 5Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei, O. Nix, Y. Li, Y. Cui, Nat. Commun. 2018, 9, 3656.
- 6A. Gupta, A. Manthiram, Adv. Energy Mater. 2020, 10, 2001972.
- 7Q. Li, D. Lu, J. Zheng, S. Jiao, L. Luo, C.-M. Wang, K. Xu, J.-G. Zhang, W. Xu, ACS Appl. Mater. Interfaces 2017, 9, 42761–42768.
- 8S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, S. Hou, T. Jin, H. Wan, J. Li, J. Tu, C. Wang, Angew. Chem. Int. Ed. 2021, 60, 3661–3671; Angew. Chem. 2021, 133, 3705–3715.
- 9T. Li, X. Q. Zhang, N. Yao, Y. X. Yao, L. P. Hou, X. Chen, M. Y. Zhou, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 22683–22687; Angew. Chem. 2021, 133, 22865–22869.
- 10J. Fu, X. Ji, J. Chen, L. Chen, X. Fan, D. Mu, C. Wang, Angew. Chem. Int. Ed. 2020, 59, 22194–22201; Angew. Chem. 2020, 132, 22378–22385.
- 11S. Kim, T. K. Lee, S. K. Kwak, N.-S. Choi, ACS Energy Lett. 2022, 7, 67–69.
- 12J. M. Zheng, M. H. Engelhard, D. H. Mei, S. H. Jiao, B. J. Polzin, J. G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012.
- 13C. S. Rustomji, Y. Yang, T. K. Kim, J. Mac, Y. J. Kim, E. Caldwell, H. Chung, Y. S. Meng, Science 2017, 356, 1351.
- 14Y. Yang, D. M. Davies, Y. Yin, O. Borodin, J. Z. Lee, C. Fang, M. Olguin, Y. Zhang, E. S. Sablina, X. Wang, C. S. Rustomji, Y. S. Meng, Joule 2019, 3, 1986–2000.
- 15J. Holoubek, K. Kim, Y. J. Yin, Z. H. Wu, H. D. Liu, M. Q. Li, A. Chen, H. P. Gao, G. R. Cai, T. A. Pascal, P. Liu, Z. Chen, Energy Environ. Sci. 2022, 15, 1647–1658.
- 16Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, Chem. Commun. 2013, 49, 11194–11196.
- 17L. Suo, Y. S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481.
- 18X. Ren, S. Chen, H. Lee, D. Mei, M. H. Engelhard, S. D. Burton, W. Zhao, J. Zheng, Q. Li, M. S. Ding, M. Schroeder, J. Alvarado, K. Xu, Y. S. Meng, J. Liu, J.-G. Zhang, W. Xu, Chem 2018, 4, 1877–1892.
- 19C. Zhu, C. Sun, R. Li, S. Weng, L. Fan, X. Wang, L. Chen, M. Noked, X. Fan, ACS Energy Lett. 2022, 7, 1338–1347.
- 20L. P. Hou, N. Yao, J. Xie, P. Shi, S. Y. Sun, C. B. Jin, C. M. Chen, Q. B. Liu, B. Q. Li, X. Q. Zhang, Q. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202201406; Angew. Chem. 2022, 134, e202201406.
- 21M. L. Gordin, F. Dai, S. Chen, T. Xu, J. Song, D. Tang, N. Azimi, Z. Zhang, D. Wang, ACS Appl. Mater. Interfaces 2014, 6, 8006–8010.
- 22S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J. G. Zhang, Adv. Mater. 2018, 30, 1706102.
- 23W. Wahyudi, V. Ladelta, L. Tsetseris, M. M. Alsabban, X. Guo, E. Yengel, H. Faber, B. Adilbekova, A. Seitkhan, A. H. Emwas, M. N. Hedhili, L. J. Li, V. Tung, N. Hadjichristidis, T. D. Anthopoulos, J. Ming, Adv. Funct. Mater. 2021, 31, 2101593.
- 24X. Dong, Y. Lin, P. Li, Y. Ma, J. Huang, D. Bin, Y. Wang, Y. Qi, Y. Xia, Angew. Chem. Int. Ed. 2019, 58, 5623–5627; Angew. Chem. 2019, 131, 5679–5683.
- 25X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. Wang, Nat. Energy 2019, 4, 882–890.
- 26J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing, G. Cai, S. Yu, H. Zhou, T. A. Pascal, Z. Chen, P. Liu, Nat. Energy 2021, 6, 303–313.
- 27K. Ding, C. Xu, Z. Peng, X. Long, J. Shi, Z. Li, Y. Zhang, J. Lai, L. Chen, Y. P. Cai, Q. Zheng, ACS Appl. Mater. Interfaces 2022, 14, 44470–44478.
- 28Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang, S. C. Kim, J. C. Lai, X. Kong, J. Qin, Y. Cui, Z. Bao, J. Am. Chem. Soc. 2021, 143, 18703–18713.
- 29J. He, X. Huang, Y. C. Li, Y. Liu, T. Babu, M. A. Aronova, S. Wang, Z. Lu, X. Chen, Z. Nie, J. Am. Chem. Soc. 2013, 135, 7974–7984.
- 30Y. X. Yao, X. Chen, C. Yan, X. Q. Zhang, W. L. Cai, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 4090–4097; Angew. Chem. 2021, 133, 4136–4143.
- 31K. Dokko, D. Watanabe, Y. Ugata, M. L. Thomas, S. Tsuzuki, W. Shinoda, K. Hashimoto, K. Ueno, Y. Umebayashi, M. Watanabe, J. Phys. Chem. B 2018, 122, 10736–10745.
- 32Y. Watanabe, Y. Ugata, K. Ueno, M. Watanabe, K. Dokko, Phys. Chem. Chem. Phys. 2023, 10.1039/d1032cp05319e.
- 33J. F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao, Y. X. Yao, C. Yan, J. Xie, J. Q. Huang, Angew. Chem. Int. Ed. 2021, 60, 11442–11447; Angew. Chem. 2021, 133, 11543–11548.
- 34B. D. Adams, J. Zheng, X. Ren, W. Xu, J. G. Zhang, Adv. Energy Mater. 2018, 8, 1702097.
- 35T. Ma, Y. Ni, Q. Wang, W. Zhang, S. Jin, S. Zheng, X. Yang, Y. Hou, Z. Tao, J. Chen, Angew. Chem. Int. Ed. 2022, 61, e202207927; Angew. Chem. 2022, 134, e202207927.
- 36Y. Zhao, T. Zhou, T. Ashirov, M. E. Kazzi, C. Cancellieri, L. P. H. Jeurgens, J. W. Choi, A. Coskun, Nat. Commun. 2022, 13, 2575.
- 37Y. Wang, S. Chen, Z. Li, C. Peng, Y. Li, W. Feng, Energy Storage Mater. 2022, 45, 474–483.
- 38L. Qiao, U. Oteo, M. Martinez-Ibanez, A. Santiago, R. Cid, E. Sanchez-Diez, E. Lobato, L. Meabe, M. Armand, H. Zhang, Nat. Mater. 2022, 21, 455–462.
- 39Y. Yamada, C. H. Chiang, K. Sodeyama, J. Wang, Y. Tateyama, A. Yamada, ChemElectroChem 2015, 2, 1687–1694.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.