Real-Time In Situ Volatile Organic Compound Sensing by a Dual-Emissive Polynuclear Ln-MOF with Pronounced LnIII Luminescence Response
Jing-Jing Pang
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Dr. Zhao-Quan Yao
School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorKuo Zhang
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorDr. Quan-Wen Li
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorZi-Xuan Fu
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorRan Zheng
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorProf. Dr. Wei Li
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jian Xu
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorProf. Dr. Xian-He Bu
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071 China
Search for more papers by this authorJing-Jing Pang
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Dr. Zhao-Quan Yao
School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorKuo Zhang
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorDr. Quan-Wen Li
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorZi-Xuan Fu
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorRan Zheng
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorProf. Dr. Wei Li
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jian Xu
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
Search for more papers by this authorProf. Dr. Xian-He Bu
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350 China
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071 China
Search for more papers by this authorAbstract
Lanthanide metal–organic frameworks (Ln-MOFs) are promising for luminescence detection of volatile organic compound (VOC) vapors, but usually suffer from the silent or quenched Ln3+ emission. Herein, we report a new dual-emissive Eu-MOF composed of the coordinatively unsaturated Eu9 clusters that afford abundant open metal sites to form a confined “binding pocket” to facilitate the preconcentration and recognition of VOCs. Single-crystal structural analyses reveal that specific analytes can replace the OH oscillators in the first coordination sphere of Eu3+ and form a unique hydrogen-bonding second-sphere adduct tying adjacent Eu9 clusters together to minimize their nonradiative vibrational decay. With the promoted Eu3+ luminescence, the MOF realizes real-time in situ visual sensing of THF vapor (<1 s) and shows a quantitative ratiometric response to the vapor pressure with a limit of detection down to 17.33 Pa. Also, it represents a top-performing ratiometric luminescent thermometer.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217456-sup-0001-misc_information.pdf3.5 MB | Supporting Information |
ange202217456-sup-0001-SI_Movie_S1.mp42.3 MB | Supporting Information |
ange202217456-sup-0001-SI_NKU-200-Eu-1,3-dioxane.cif519.1 KB | Supporting Information |
ange202217456-sup-0001-SI_NKU-200-Eu-1,4-dioxane.cif713.8 KB | Supporting Information |
ange202217456-sup-0001-SI_NKU-200-Eu-100K.cif785.4 KB | Supporting Information |
ange202217456-sup-0001-SI_NKU-200-Eu-298K.cif1.1 MB | Supporting Information |
ange202217456-sup-0001-SI_NKU-200-Eu-THF-10_min.cif780.7 KB | Supporting Information |
ange202217456-sup-0001-SI_NKU-200-Eu-THF-30_min.cif770.7 KB | Supporting Information |
ange202217456-sup-0001-SI_NKU-200-Eu-THF.cif698.2 KB | Supporting Information |
ange202217456-sup-0001-SI_NKU-200-Eu-THP.cif559.2 KB | Supporting Information |
ange202217456-sup-0001-SI_NKU-200-Gd.cif2 MB | Supporting Information |
ange202217456-sup-0001-SI_NKU-200-Tb.cif1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Valeur, M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, 2012, pp. 379–473.
- 2H. Y. Li, S. N. Zhao, S. Q. Zang, J. Li, Chem. Soc. Rev. 2020, 49, 6364–6401.
- 3S. V. Eliseeva, J. C. Bunzli, Chem. Soc. Rev. 2010, 39, 189–227.
- 4A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. D. Malhotra, S. Bhansali, Chem. Rev. 2015, 115, 4571–4606.
- 5O. S. Wenger, Chem. Rev. 2013, 113, 3686–3733.
- 6V. Kumar, K. H. Kim, P. Kumar, B. H. Jeon, J. C. Kim, Coord. Chem. Rev. 2017, 342, 80–105.
- 7Z. C. Zhou, W. Xiong, Y. F. Zhang, D. J. Yang, T. Wang, Y. K. Che, J. C. Zhao, Anal. Chem. 2017, 89, 3814–3818.
- 8Y. M. Zhang, S. Yuan, G. Day, X. Wang, X. Y. Yang, H. C. Zhou, Coord. Chem. Rev. 2018, 354, 28–45.
- 9S. Y. Wu, H. Min, W. Shi, P. Cheng, Adv. Mater. 2020, 32, 1805871.
- 10H. Q. Yin, X. B. Yin, Acc. Chem. Res. 2020, 53, 485–495.
- 11Y. Takashima, V. M. Martínez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Nat. Commun. 2011, 2, 168.
- 12Y. Li, S. S. Zhang, D. T. Song, Angew. Chem. Int. Ed. 2013, 52, 710–713; Angew. Chem. 2013, 125, 738–741.
- 13T. Y. Luo, P. Das, D. L. White, C. Liu, A. Star, N. L. Rosi, J. Am. Chem. Soc. 2020, 142, 2897–2904.
- 14J. Y. Ren, Z. Niu, Y. X. Ye, C. Y. Tsai, S. X. Liu, Q. Z. Liu, X. Q. Huang, A. Nafady, S. Q. Ma, Angew. Chem. Int. Ed. 2021, 60, 23705–23712; Angew. Chem. 2021, 133, 23898–23905.
- 15W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, S. K. Ghosh, Chem. Soc. Rev. 2017, 46, 3242–3285.
- 16K. Binnemans, Chem. Rev. 2009, 109, 4283–4374.
- 17L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E. Tondello, Coord. Chem. Rev. 2010, 254, 487–505.
- 18Y. J. Cui, B. L. Chen, G. D. Qian, Coord. Chem. Rev. 2014, 273–274, 76–86.
- 19J. I. Deneff, K. S. Butler, L. E. S. Rohwer, C. J. Pearce, N. R. Valdez, M. A. Rodriguez, T. S. Luk, D. S. F. Gallis, Angew. Chem. Int. Ed. 2021, 60, 1203–1211; Angew. Chem. 2021, 133, 1223–1231.
- 20Z. H. Gao, S. Yang, B. Y. Xu, T. J. Zhang, S. W. Chen, W. G. Zhang, X. Sun, Z. F. Wang, X. Wang, X. G. Meng, Angew. Chem. Int. Ed. 2021, 60, 24519–24525; Angew. Chem. 2021, 133, 24724–24730.
- 21J. C. G. Bünzli, Chem. Rev. 2010, 110, 2729–2755.
- 22H. Q. Xin, X. Y. Wang, X. B. Yin, J. Am. Chem. Soc. 2019, 141, 15166–15173.
- 23X. Y. Xu, X. Lian, J. N. Hao, C. Zhang, B. Yan, Adv. Mater. 2017, 29, 1702298.
- 24B. L. Chen, Y. Yang, F. Zapata, G. N. Lin, G. D. Qian, E. B. Lobkovsky, Adv. Mater. 2007, 19, 1693–1696.
- 25Y. Q. Sun, Y. Cheng, X. B. Yin, Anal. Chem. 2021, 93, 3559–3566.
- 26J. Rocha, L. D. Carlos, F. A. A. Paz, D. Ananias, Chem. Soc. Rev. 2011, 40, 926–940.
- 27Y. J. Cui, Y. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126–1162.
- 28D. Parker, J. D. Fradgleya, K. L. Wong, Chem. Soc. Rev. 2021, 50, 8193–8213.
- 29X. Y. Wang, X. Yao, Q. Huang, Y. X. Li, G. H. An, G. M. Li, Anal. Chem. 2018, 90, 6675–6682.
- 30K. Meng, C. Yao, Q. M. Ma, Z. H. Xue, Y. P. Du, W. G. Liu, D. Y. Yang, Adv. Sci. 2019, 6, 1802112.
- 31B. Li, Z. H. Song, K. Y. Zhu, Q. Y. Niu, Z. Q. Li, H. R. Li, ACS Appl. Mater. Interfaces 2021, 13, 20633–20640.
- 32D. Parker, Coord. Chem. Rev. 2000, 205, 109–130.
- 33D. Parker, R. S. Dickins, H. Puschmann, C. Crossland, J. A. K. Howard, Chem. Rev. 2002, 102, 1977–2010.
- 34R. G. AbdulHalim, P. M. Bhatt, Y. Belmabkhout, A. Shkurenko, K. Adil, L. J. Barbour, M. Eddaoudi, J. Am. Chem. Soc. 2017, 139, 10715–10722.
- 35L. L. Zhang, S. Yuan, L. Feng, B. B. Guo, J. S. Qin, B. Xu, C. Lollar, D. F. Sun, H. C. Zhou, Angew. Chem. Int. Ed. 2018, 57, 5095–5099; Angew. Chem. 2018, 130, 5189–5193.
- 36S. Yuan, W. G. Lu, Y. P. Chen, Q. Zhang, T. F. Liu, D. W. Feng, X. Wang, J. S. Qin, H. C. Zhou, J. Am. Chem. Soc. 2015, 137, 3177–3180.
- 37D. M. Ren, H. L. Xia, K. Zhou, S. J. Wu, X. Y. Liu, X. T. Wang, J. Li, Angew. Chem. Int. Ed. 2021, 60, 25048–25054; Angew. Chem. 2021, 133, 25252–25258.
- 38C. Y. Liu, X. R. Chen, H. X. Chen, Z. Niu, H. Hirao, P. Braunstein, J. P. Lang, J. Am. Chem. Soc. 2020, 142, 6690–6697.
- 39C. Y. Gao, D. Wang, J. P. Li, Y. Wang, W. T. Yang, CrystEngComm 2016, 18, 2857–2863.
- 40H. Y. Zheng, X. Lian, S. J. Qin, B. Yan, Dalton Trans. 2018, 47, 6210–6217.
- 41A. Douvali, A. C. Tsipis, S. V. Eliseeva, S. Petoud, G. S. Papaefstathiou, C. D. Malliakas, I. Papadas, G. S. Armatas, I. Margiolaki, M. G. Kanatzidis, T. Lazarides, M. J. Manos, Angew. Chem. Int. Ed. 2015, 54, 1651–1656; Angew. Chem. 2015, 127, 1671–1676.
- 42M. Zhang, G. X. Feng, Z. G. Song, Y. P. Zhou, H. Y. Chao, D. Q. Yuan, T. T. Y. Tan, Z. G. Guo, Z. G. Hu, B. Z. Tang, B. Liu, D. Zhao, J. Am. Chem. Soc. 2014, 136, 7241–7244.
- 43J. Q. Dong, A. K. Tummanapelli, X. Li, S. M. Ying, H. Hirao, D. Zhao, Chem. Mater. 2016, 28, 7889–7897.
- 44Z. R. Yang, M. M. Wang, X. S. Wang, X. B. Yin, Anal. Chem. 2017, 89, 1930–1936.
- 45Y. F. Zhao, M. Y. Wan, J. P. Bai, H. Zeng, W. G. Lu, D. Li, J. Mater. Chem. A 2019, 7, 11127–11133.
- 46Z. J. Chen, Ł. J. Weseliński, K. Adil, Y. Belmabkhout, A. Shkurenko, H. Jiang, P. M. Bhatt, V. Guillerm, E. Dauzon, D. X. Xue, M. O'Keeffe, M. Eddaoudi, J. Am. Chem. Soc. 2017, 139, 3265–3274.
- 47V. Quezada-Novoa, H. M. Titi, A. A. Sarjeant, A. J. Howarth, Chem. Mater. 2021, 33, 4163–4169.
- 48X. L. Lv, L. Feng, L. H. Xie, T. He, W. Wu, K. Y. Wang, G. R. Si, B. Wang, J. R. Li, H. C. Zhou, J. Am. Chem. Soc. 2021, 143, 2784–2791.
- 49D. A. Gómez-Gualdrón, P. Z. Moghadam, J. T. Hupp, O. K. Farha, R. Q. Snurr, J. Am. Chem. Soc. 2016, 138, 215–224.
- 50Z. W. Wei, Z. Y. Gu, R. K. Arvapally, Y. P. Chen, R. N. McDougald, J. F. Ivy, A. A. Yakovenko, D. W. Feng, M. A. Omary, H. C. Zhou, J. Am. Chem. Soc. 2014, 136, 8269–8276.
- 51F. J. Steemers, W. Verboom, D. N. Reinhoudt, E. B. Vandertol, J. W. Verhoeven, J. Am. Chem. Soc. 1995, 117, 9408–9414.
- 52M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, J. Kankare, J. Lumin. 1997, 75, 149–169.
- 53L. Youmo, F. Guillen, C. Fouassier, P. Hagenmuller, J. Electrochem. Soc. 1985, 132, 717–721.
- 54B. A. Maynard, P. A. Smith, L. Ladner, A. Jaleel, N. Beedoe, C. Crawford, Z. Assefa, R. E. Sykora, Inorg. Chem. 2009, 48, 6425–6435.
- 55Z. Guo, G. Li, H. Wang, J. Zhao, Y. Liu, H. Tan, X. Li, P. J. Stang, X. Yan, J. Am. Chem. Soc. 2021, 143, 9215–9221.
- 56X. Chen, D. F. Peng, Q. Ju, F. Wang, Chem. Soc. Rev. 2015, 44, 1318–1330.
- 57D. Wu, Z. Zhang, X. W. Chen, L. K. Meng, C. G. Li, G. H. Li, X. B. Chen, Z. Shi, S. H. Feng, Chem. Commun. 2019, 55, 14918–14921.
- 58S. S. Nadif, J. Pedziwiatr, I. Ghiviriga, K. A. Abboud, A. S. Veige, Organometallics 2015, 34, 1107–1117.
- 59Y. M. Yao, Q. Shen, J. Sun, Polyhedron 1998, 17, 519–522.
- 60G. Z. Qi, Y. H. Lin, J. Y. Hu, Polyhedron 1995, 14, 413–415.
- 61R. J. Murray-Watson, S. D. Pike, Organometallics 2020, 39, 3759–3767.
- 62M. A. Uvarovaa, S. E. Nefedov, Russ. J. Coord. Chem. 2021, 47, 399–408.
- 63R. W. Huang, Y. S. Wei, X. Y. Dong, X. H. Wu, C. X. Du, S. Q. Zang, T. C. W. Mak, Nat. Chem. 2017, 9, 689–697.
- 64T. T. Feng, Y. X. Ye, X. Liu, H. Cui, Z. Q. Li, Y. Zhang, B. Liang, H. R. Li, B. L. Chen, Angew. Chem. Int. Ed. 2020, 59, 21752–21757; Angew. Chem. 2020, 132, 21936–21941.
- 65CCDC numbers for NKU-200-Eu at different temperatures, NKU-200-Tb, NKU-200-Gd, and NKU-200-Eu⊃solvents (THF, 1,4-dioxane, 1,3-dioxane, and THP). Deposition Numbers 2083320 (for NKU-200-Eu at 100 K), 2083321 (for NKU-200-Eu at 298 K), 2177636 (for NKU-200-Tb), 2177637 (for NKU-200-Gd), 2177638 (for NKU-200-Eu⊃THF), 2083318 (for NKU-200-Eu⊃THF-10 min), 2083319 (for NKU-200-Eu⊃THF-30 min), 2177639 (for NKU-200-Eu⊃1,4-dioxane), 2177640 (for NKU-200-Eu⊃1,3-dioxane), and 2177641 (for NKU-200-Eu⊃THP) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.