Boosting Electroreduction of CO2 over Cationic Covalent Organic Frameworks: Hydrogen Bonding Effects of Halogen Ions
Qiu-Jin Wu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Contribution: Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Duan-Hui Si
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Contribution: Methodology (lead), Writing - review & editing (supporting)
Search for more papers by this authorQiao Wu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Contribution: Data curation (supporting)
Search for more papers by this authorYu-Liang Dong
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Contribution: Data curation (supporting)
Search for more papers by this authorProf. Rong Cao
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
Contribution: Conceptualization (equal), Funding acquisition (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yuan-Biao Huang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Contribution: Conceptualization (lead), Funding acquisition (lead), Writing - review & editing (lead)
Search for more papers by this authorQiu-Jin Wu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Contribution: Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Duan-Hui Si
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Contribution: Methodology (lead), Writing - review & editing (supporting)
Search for more papers by this authorQiao Wu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Contribution: Data curation (supporting)
Search for more papers by this authorYu-Liang Dong
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Contribution: Data curation (supporting)
Search for more papers by this authorProf. Rong Cao
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
Contribution: Conceptualization (equal), Funding acquisition (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yuan-Biao Huang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Contribution: Conceptualization (lead), Funding acquisition (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
We present the first example of charged imidazolium functionalized porphyrin-based covalent organic framework (Co-iBFBim-COF-X) for electrocatalytic CO2 reduction reaction, where the free anions (e.g., F−, Cl−, Br−, and I−) of imidazolium ions nearby the active Co sites can stabilize the key intermediate *COOH and inhibit hydrogen evolution reaction. Thus, Co-iBFBim-COF-X exhibits higher activity than the neutral Co-BFBim-COF, following the trend of F−<Cl−<Br−<I−. Particularly, the Co-iBFBim-COF-I− showed nearly 100 % CO2 selectivity at a low full-cell voltage of 2.3 V, and achieved a high CO2 partial current density of 52 mA cm−2 with a turnover frequency of 3018 h−1 at 2.4 V in the anion membrane electrode assembly, which is 3.57 times larger than that of neutral Co-BFBim-COF. This work provides new insight into the importance of free anions in the stabilization of intermediates and decreasing the local binding energy of H2O with active moiety to enhance CO2 reduction reaction.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article or from the corresponding author on request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202215687-sup-0001-misc_information.pdf5.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q.-J. Wu, J. Liang, Y.-B. Huang, R. Cao, Acc. Chem. Res. 2022, 55, 2978–2997.
- 2
- 2aD. Gao, R. M. Arán-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal. 2019, 2, 198–210;
- 2bY. Hou, Y.-B. Huang, Y.-L. Liang, G.-L. Chai, J.-D. Yi, T. Zhang, K.-T. Zang, J. Luo, R. Xu, H. Lin, S.-Y. Zhang, H.-M. Wang, R. Cao, CCS Chem. 2019, 1, 384–395;
- 2cG. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev. 2021, 50, 4993–5061.
- 3
- 3aC. S. Diercks, O. M. Yaghi, Science 2017, 355, eaal1585;
- 3bY. Lv, Y. Li, G. Zhang, Z. Peng, L. Ye, Y. Chen, T. Zhang, G. Xing, L. Chen, CCS Chem. 2022, 4, 1519–1525;
- 3cS. Kandambeth, K. Dey, R. Banerjee, J. Am. Chem. Soc. 2019, 141, 1807–1822.
- 4Z. Wang, S. Zhang, Y. Chen, Z. Zhang, S. Ma, Chem. Soc. Rev. 2020, 49, 708–735.
- 5
- 5aR. Chen, J. L. Shi, Y. Ma, G. Lin, X. Lang, C. Wang, Angew. Chem. Int. Ed. 2019, 58, 6430–6434; Angew. Chem. 2019, 131, 6496–6500;
- 5bX. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W. H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem. 2018, 10, 1180–1189;
- 5cC. He, D.-H. Si, Y.-B. Huang, R. Cao, Angew. Chem. Int. Ed. 2022, 61, e202207478; Angew. Chem. 2022, 134, e202207478;
- 5dC. He, Q. J. Wu, M. J. Mao, Y. H. Zou, B. T. Liu, Y. B. Huang, R. Cao, CCS Chem. 2020, 2, 2368–2380;
- 5eC. He, J. Liang, Y. H. Zou, J. D. Yi, Y. B. Huang, R. Cao, Natl. Sci. Rev. 2022, 9, nwab157.
- 6
- 6aB. Han, X. Ding, B. Yu, H. Wu, W. Zhou, W. Liu, C. Wei, B. Chen, D. Qi, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, J. Am. Chem. Soc. 2021, 143, 7104–7113;
- 6bJ. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 2020, 49, 3565–3604;
- 6cH. J. Zhu, M. Lu, Y. R. Wang, S. J. Yao, M. Zhang, Y. H. Kan, J. Liu, Y. Chen, S. L. Li, Y. Q. Lan, Nat. Commun. 2020, 11, 497;
- 6dL.-S. Sun, M. Lu, Z.-F. Yang, Z.-Y. Yu, X. Su, Y.-Q. Lan, L. Chen, Angew. Chem. Int. Ed. 2022, 61, e202204326; Angew. Chem. 2022, 134, e202204326;
- 6eM. Li, J.-J. Liu, Y.-S. Li, G.-L. Xing, X. Yu, C.-X. Peng, L. Chen, CCS Chem. 2020, 2, 696–706.
- 7S. Cao, B. Li, R. Zhu, H. Pang, Chem. Eng. J. 2019, 355, 602–623.
- 8S. Lin, C. S. Diercks, Y. B. Zhang, N. Kornienko, E. M. Nichols, Y. B. Zhao, A. R. Paris, D. Kim, P. D. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208–1213.
- 9
- 9aS.-Y. Chi, Q. Chen, S.-S. Zhao, D.-H. Si, Q.-J. Wu, Y.-B. Huang, R. Cao, J. Mater. Chem. A 2022, 10, 4653–4659;
- 9bQ. Wu, R.-K. Xie, M.-J. Mao, G.-L. Chai, J.-D. Yi, S.-S. Zhao, Y.-B. Huang, R. Cao, ACS Energy Lett. 2020, 5, 1005–1012.
- 10
- 10aB. Han, Y. Jin, B. Chen, W. Zhou, B. Yu, C. Wei, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202114244; Angew. Chem. 2022, 134, e202114244;
- 10bN. Huang, K. H. Lee, Y. Yue, X. Xu, S. Irle, Q. Jiang, D. Jiang, Angew. Chem. Int. Ed. 2020, 59, 16587–16593; Angew. Chem. 2020, 132, 16730–16736;
- 10cM. Lu, M. Zhang, C. G. Liu, J. Liu, L. J. Shang, M. Wang, J. N. Chang, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2021, 60, 4864–4871; Angew. Chem. 2021, 133, 4914–4921.
- 11
- 11aH. Wang, Y. Zhao, F. Zhang, Y. Wu, R. Li, J. Xiang, Z. Wang, B. Han, Z. Liu, Angew. Chem. Int. Ed. 2020, 59, 11850–11855; Angew. Chem. 2020, 132, 11948–11953;
- 11bE. M. Nichols, J. S. Derrick, S. K. Nistanaki, P. T. Smith, C. J. Chang, Chem. Sci. 2018, 9, 2952–2960;
- 11cP. Gotico, B. Boitrel, R. Guillot, M. Sircoglou, A. Quaranta, Z. Halime, W. Leibl, A. Aukauloo, Angew. Chem. Int. Ed. 2019, 58, 4504–4509; Angew. Chem. 2019, 131, 4552–4557;
- 11dM. R. Narouz, P. De La Torre, L. An, C. J. Chang, Angew. Chem. Int. Ed. 2022, 61, e202207666; Angew. Chem. 2022, 134, e202207666.
- 12
- 12aS. Hong, S. Lee, S. Kim, J. K. Lee, J. Lee, Catal. Today 2017, 295, 82–88;
- 12bH. Q. Fu, L. Zhang, L. R. Zheng, P. F. Liu, H. Zhao, H. G. Yang, J. Mater. Chem. A 2019, 7, 12420–12425;
- 12cL. Fotović, V. Stilinović, CrystEngComm 2020, 22, 4039–4046;
- 12dW. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Nat. Catal. 2020, 3, 478–487.
- 13
- 13aL. Ge, H. Rabiee, M. Li, S. Subramanian, Y. Zheng, J. H. Lee, T. Burdyny, H. Wang, Chem 2022, 8, 663–692;
- 13bC. Ma, P. Hou, X. Wang, Z. Wang, W. Li, P. Kang, Appl. Catal. B 2019, 250, 347–354;
- 13cJ. Lee, J. Lim, C.-W. Roh, H. S. Whang, H. Lee, J. CO2 Util. 2019, 31, 244–250;
- 13dS. Lamaison, D. Wakerley, F. Kracke, T. Moore, L. Zhou, D. U. Lee, L. Wang, M. A. Hubert, J. E. Aviles Acosta, J. M. Gregoire, E. B. Duoss, S. Baker, V. A. Beck, A. M. Spormann, M. Fontecave, C. Hahn, T. F. Jaramillo, Adv. Mater. 2022, 34, 2103963;
- 13eK. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H. Wang, Energy Environ. Sci. 2018, 11, 893–903;
- 13fP. Hou, X. Wang, Z. Wang, P. Kang, ACS Appl. Mater. Interfaces 2018, 10, 38024–38031;
- 13gM. H. Han, D. Kim, S. Kim, S. H. Yu, D. H. Won, B. K. Min, K. H. Chae, W. H. Lee, H. S. Oh, Adv. Energy Mater. 2022, 12, 2201843.
- 14S. Zhu, B. Jiang, W. B. Cai, M. Shao, J. Am. Chem. Soc. 2017, 139, 15664–15667.
- 15J. D. Yi, R. Xie, Z. L. Xie, G. L. Chai, T. F. Liu, R. P. Chen, Y. B. Huang, R. Cao, Angew. Chem. Int. Ed. 2020, 59, 23641–23648; Angew. Chem. 2020, 132, 23849–23856.
- 16U. Manna, S. Kayal, S. Samanta, G. Das, Dalton Trans. 2017, 46, 10374–10386.
- 17J. Cyriac, T. Pradeep, Chem. Phys. Lett. 2005, 402, 116–120.
- 18
- 18aW. Ge, Y. Chen, Y. Fan, Y. Zhu, H. Liu, L. Song, Z. Liu, C. Lian, H. Jiang, C. Li, J. Am. Chem. Soc. 2022, 144, 6613–6622;
- 18bR. R. Rao, B. Huang, Y. Katayama, J. Hwang, T. Kawaguchi, J. R. Lunger, J. Peng, Y. Zhang, A. Morinaga, H. Zhou, H. You, Y. Shao-Horn, J. Phys. Chem. C 2021, 125, 8195–8207.
- 19C. W. Lee, N. H. Cho, K. D. Yang, K. T. Nam, ChemElectroChem 2017, 4, 2130–2136.
- 20F. Zhou, S. Liu, B. Yang, P. Wang, A. S. Alshammari, Y. Deng, Electrochem. Commun. 2014, 46, 103–106.
- 21
- 21aL. Lin, H. Li, C. Yan, H. Li, R. Si, M. Li, J. Xiao, G. Wang, X. Bao, Adv. Mater. 2019, 31, 1903470;
- 21bD. Kim, C. Xie, N. Becknell, Y. Yu, M. Karamad, K. Chan, E. J. Crumlin, J. K. Norskov, P. Yang, J. Am. Chem. Soc. 2017, 139, 8329–8336.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.