Optimizing Acetylene Sorption through Induced-fit Transformations in a Chemically Stable Microporous Framework
Jindou Tian
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Qihui Chen
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorProf. Dr. Feilong Jiang
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Daqiang Yuan
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Maochun Hong
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorJindou Tian
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Qihui Chen
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorProf. Dr. Feilong Jiang
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Daqiang Yuan
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Maochun Hong
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorAbstract
Developing practical storage technologies for acetylene (C2H2) is important but challenging because C2H2 is useful but explosive. Here, a novel metal–organic framework (MOF) (FJI-H36) with adaptive channels was prepared. It can effectively capture C2H2 (159.9 cm3 cm−3) at 1 atm and 298 K, possessing a record-high storage density (561 g L−1) but a very low adsorption enthalpy (28 kJ mol−1) among all the reported MOFs. Structural analyses show that such excellent adsorption performance comes from the synergism of active sites, flexible framework, and matched pores; where the adsorbed-C2H2 can drive FJI-H36 to undergo induced-fit transformations step by step, including deformation/reconstruction of channels, contraction of pores, and transformation of active sites, finally leading to dense packing of C2H2. Moreover, FJI-H36 has excellent chemical stability and recyclability, and can be prepared on a large scale, enabling it as a practical adsorbent for C2H2. This will provide a useful strategy for developing practical and efficient adsorbents for C2H2 storage.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202215253-sup-0001-FJI-H36-Activated-checkcif.pdf150.4 KB | Supporting Information |
ange202215253-sup-0001-FJI-H36-C2H2-checkcif.pdf142.9 KB | Supporting Information |
ange202215253-sup-0001-FJI-H36-checkcif.pdf146.5 KB | Supporting Information |
ange202215253-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
ange202215253-sup-0001-SI_FJI-H36-Activated.cif811.6 KB | Supporting Information |
ange202215253-sup-0001-SI_FJI-H36-C2H2.cif619.9 KB | Supporting Information |
ange202215253-sup-0001-SI_FJI-H36.cif614.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003.
10.1002/9783527619191 Google Scholar
- 2P. Pässler, W. Hefner, K. Buckl, H. Meinass, A. Meiswinkel, H.-J. Wernicke, G. Ebersberg, R. Müller, J. Bässler, H. Behringer, D. Mayer, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012.
- 3
- 3aH. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276–279;
- 3bS. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375; Angew. Chem. 2004, 116, 2388–2430;
- 3cX. Zhang, B. Wang, A. Alsalme, S. Xiang, Z. Zhang, B. Chen, Coord. Chem. Rev. 2020, 423, 213507;
- 3dZ. Zhang, M. J. Zaworotko, Chem. Soc. Rev. 2014, 43, 5444–5455;
- 3eZ. Chen, H. Jiang, M. Li, M. O'Keeffe, M. Eddaoudi, Chem. Rev. 2020, 120, 8039–8065;
- 3fY. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Acc. Chem. Res. 2016, 49, 483–493;
- 3gJ. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 2014, 43, 6011–6061;
- 3hK. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724–781;
- 3iJ.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Chem. Rev. 2012, 112, 1001–1033;
- 3jS. B. Peh, A. Karmakar, D. Zhao, Trends Chem. 2020, 2, 199–213;
- 3kL. Feng, K.-Y. Wang, G. S. Day, M. R. Ryder, H.-C. Zhou, Chem. Rev. 2020, 120, 13087–13133;
- 3lT. L. Easun, F. Moreau, Y. Yan, S. Yang, M. Schroeder, Chem. Soc. Rev. 2017, 46, 239–274;
- 3mD. Wu, K. Zhou, J. Tian, C. Liu, J. Tian, F. Jiang, D. Yuan, J. Zhang, Q. Chen, M. Hong, Angew. Chem. Int. Ed. 2021, 60, 3087–3094; Angew. Chem. 2021, 133, 3124–3131.
- 4
- 4aR.-B. Lin, S. Xiang, W. Zhou, B. Chen, Chem 2020, 6, 337–363;
- 4bS. Mukherjee, D. Sensharma, K.-J. Chen, M. J. Zaworotko, Chem. Commun. 2020, 56, 10419–10441;
- 4cC. Y. Chuah, H. Lee, T.-H. Bae, Chem. Eng. J. 2022, 430, 132654;
- 4dR. B. Getman, Y.-S. Bae, C. E. Wilmer, R. Q. Snurr, Chem. Rev. 2012, 112, 703–723.
- 5
- 5aJ. Wang, Y. Zhang, Y. Su, X. Liu, P. Zhang, R.-B. Lin, S. Chen, Q. Deng, Z. Zeng, S. Deng, B. Chen, Nat. Commun. 2022, 13, 200;
- 5bX. Zhang, R. B. Lin, H. Wu, Y. H. Huang, Y. X. Ye, J. G. Duan, W. Zhou, J. R. Li, B. L. Chen, Chem. Eng. J. 2022, 431, 134184;
- 5cW. Gong, H. Cui, Y. Xie, Y. Li, X. Tang, Y. Liu, Y. Cui, B. Chen, J. Am. Chem. Soc. 2021, 143, 14869–14876;
- 5dJ. Gao, X. Qian, R. B. Lin, R. Krishna, H. Wu, W. Zhou, B. Chen, Angew. Chem. Int. Ed. 2020, 59, 4396–4400; Angew. Chem. 2020, 132, 4426–4430;
- 5eY. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2019, 141, 4130–4136;
- 5fR. B. Lin, L. Li, H. Wu, H. Arman, B. Li, R. G. Lin, W. Zhou, B. Chen, J. Am. Chem. Soc. 2017, 139, 8022–8028;
- 5gF. Luo, C. Yan, L. Dang, R. Krishna, W. Zhou, H. Wu, X. Dong, Y. Han, T.-L. Hu, M. O′Keeffe, L. Wang, M. Luo, R.-B. Lin, B. Chen, J. Am. Chem. Soc. 2016, 138, 5678–5684;
- 5hX. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M. J. Zaworotko, B. Chen, Science 2016, 353, 141–144;
- 5iS. Xiang, W. Zhou, Z. Zhang, M. A. Green, Y. Liu, B. Chen, Angew. Chem. Int. Ed. 2010, 49, 4615–4618; Angew. Chem. 2010, 122, 4719–4722;
- 5jS. Xiang, W. Zhou, J. M. Gallegos, Y. Liu, B. Chen, J. Am. Chem. Soc. 2009, 131, 12415–12419.
- 6
- 6aD. Sensharma, D. J. O′Hearn, A. Koochaki, A. A. Bezrukov, N. Kumar, B. H. Wilson, M. Vandichel, M. J. Zaworotko, Angew. Chem. Int. Ed. 2022, 61, e202116145; Angew. Chem. 2022, 134, e202116145;
- 6bM. Shivanna, K.-I. Otake, B.-Q. Song, L. M. van Wyk, Q.-Y. Yang, N. Kumar, W. K. Feldmann, T. Pham, S. Suepaul, B. Space, L. J. Barbour, S. Kitagawa, M. J. Zaworotko, Angew. Chem. Int. Ed. 2021, 60, 20383–20390; Angew. Chem. 2021, 133, 20546–20553;
- 6cN. Kumar, S. Mukherjee, N. C. Harvey-Reid, A. A. Bezrukov, K. Tan, V. Martins, M. Vandichel, T. Pham, L. M. van Wyk, K. Oyekan, A. Kumar, K. A. Forrest, K. M. Patil, L. J. Barbour, B. Space, Y. Huang, P. E. Kruger, M. J. Zaworotko, Chem 2021, 7, 3085–3098;
- 6dY.-L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K.-J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko, Z. Zhang, Angew. Chem. Int. Ed. 2018, 57, 10971–10975; Angew. Chem. 2018, 130, 11137–11141;
- 6eK.-J. Chen, H. S. Scott, D. G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, K. A. Forrest, B. Space, J. J. Perry, M. J. Zaworotko, Chem 2016, 1, 753–765.
- 7
- 7aM. Bonneau, C. Lavenn, J. J. Zheng, A. Legrand, T. Ogawa, K. Sugimoto, F. X. Coudert, R. Reau, S. Sakaki, K. I. Otake, S. Kitagawa, Nat. Chem. 2022, 14, 816–822;
- 7bM. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata, S. Kitagawa, J. Am. Chem. Soc. 2016, 138, 3022–3030;
- 7cR. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238–241.
- 8
- 8aW. J. F. Trenholme, D. I. Kolokolov, M. Bound, S. P. Argent, J. A. Gould, J. Li, S. A. Barnett, A. J. Blake, A. G. Stepanov, E. Besley, T. L. Easun, S. Yang, M. Schroder, J. Am. Chem. Soc. 2021, 143, 3348–3358;
- 8bT. D. Duong, S. A. Sapchenko, I. da Silva, H. G. W. Godfrey, Y. Chen, L. L. Daemen, P. Manuel, A. J. Ramirez-Cuesta, S. Yang, M. Schroder, J. Am. Chem. Soc. 2018, 140, 16006–16009;
- 8cF. Moreau, I. da Silva, N. H. Al Smail, T. L. Easun, M. Savage, H. G. Godfrey, S. F. Parker, P. Manuel, S. Yang, M. Schroder, Nat. Commun. 2017, 8, 14085;
- 8dY. Yan, M. Juricek, F.-X. Coudert, N. A. Vermeulen, S. Grunder, A. Dailly, W. Lewis, A. J. Blake, J. F. Stoddart, M. Schroeder, J. Am. Chem. Soc. 2016, 138, 3371–3381;
- 8eS. Yang, A. J. Ramirez-Cuesta, R. Newby, V. Garcia-Sakai, P. Manuel, S. K. Callear, S. I. Campbell, C. C. Tang, M. Schroeder, Nat. Chem. 2015, 7, 121–129.
- 9
- 9aL. Zhang, K. Jiang, L. Yang, L. Li, E. Hu, L. Yang, K. Shao, H. Xing, Y. Cui, Y. Yang, B. Li, B. Chen, G. Qian, Angew. Chem. Int. Ed. 2021, 60, 15995–16002; Angew. Chem. 2021, 133, 16131–16138;
- 9bJ. Pei, H. M. Wen, X. W. Gu, Q. L. Qian, Y. Yang, Y. Cui, B. Li, B. Chen, G. Qian, Angew. Chem. Int. Ed. 2021, 60, 25068–25074; Angew. Chem. 2021, 133, 25272–25278;
- 9cJ. Pei, K. Shao, J. X. Wang, H. M. Wen, Y. Yang, Y. Cui, R. Krishna, B. Li, G. Qian, Adv. Mater. 2020, 32, 1908275.
- 10
- 10aA. N. Hong, E. Kusumoputro, Y. Wang, H. Yang, Y. Chen, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2022, 61, e202116064; Angew. Chem. 2022, 134, e202116064;
- 10bY. Wang, X. Jia, H. Yang, Y. Wang, X. Chen, A. N. Hong, J. Li, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2020, 59, 19027–19030; Angew. Chem. 2020, 132, 19189–19192;
- 10cY.-P. Li, Y. Wang, Y.-Y. Xue, H.-P. Li, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang, M.-C. Hu, X. Bu, Angew. Chem. Int. Ed. 2019, 58, 13590–13595; Angew. Chem. 2019, 131, 13724–13729.
- 11
- 11aY. Ye, S. Xian, H. Cui, K. Tan, L. Gong, B. Liang, T. Pham, H. Pandey, R. Krishna, P. C. Lan, K. A. Forrest, B. Space, T. Thonhauser, J. Li, S. Ma, J. Am. Chem. Soc. 2022, 144, 1681–1689;
- 11bZ. Niu, X. Cui, T. Pham, G. Verma, P. C. Lan, C. Shan, H. Xing, K. A. Forrest, S. Suepaul, B. Space, A. Nafady, A. M. Al-Enizi, S. Ma, Angew. Chem. Int. Ed. 2021, 60, 5283–5288; Angew. Chem. 2021, 133, 5343–5348.
- 12
- 12aL. Wang, W. Sun, Y. Zhang, N. Xu, R. Krishna, J. Hu, Y. Jiang, Y. He, H. Xing, Angew. Chem. Int. Ed. 2021, 60, 22865–22870; Angew. Chem. 2021, 133, 23047–23052;
- 12bY. Zhang, J. Hu, R. Krishna, L. Wang, L. Yang, X. Cui, S. Duttwyler, H. Xing, Angew. Chem. Int. Ed. 2020, 59, 17664–17669; Angew. Chem. 2020, 132, 17817–17822.
- 13
- 13aZ. Zhang, S. B. Peh, R. Krishna, C. Kang, K. Chai, Y. Wang, D. Shi, D. Zhao, Angew. Chem. Int. Ed. 2021, 60, 17198–17204; Angew. Chem. 2021, 133, 17335–17341;
- 13bZ. Zhang, S. B. Peh, Y. Wang, C. Kang, W. Fan, D. Zhao, Angew. Chem. Int. Ed. 2020, 59, 18927–18932; Angew. Chem. 2020, 132, 19089–19094.
- 14
- 14aH. Li, C. Liu, C. Chen, Z. Di, D. Yuan, J. Pang, W. Wei, M. Wu, M. Hong, Angew. Chem. Int. Ed. 2021, 60, 7547–7552; Angew. Chem. 2021, 133, 7625–7630;
- 14bZ. Di, C. Liu, J. Pang, C. Chen, F. Hu, D. Yuan, M. Wu, M. Hong, Angew. Chem. Int. Ed. 2021, 60, 10828–10832; Angew. Chem. 2021, 133, 10923–10927;
- 14cJ. Pang, F. Jiang, M. Wu, C. Liu, K. Su, W. Lu, D. Yuan, M. Hong, Nat. Commun. 2015, 6, 7575.
- 15
- 15aH. Zeng, M. Xie, Y.-L. Huang, Y. Zhao, X.-J. Xie, J.-P. Bai, M.-Y. Wan, R. Krishna, W. Lu, D. Li, Angew. Chem. Int. Ed. 2019, 58, 8515–8519; Angew. Chem. 2019, 131, 8603–8607;
- 15bX.-J. Xie, H. Zeng, M. Xie, W. Chen, G.-F. Hua, W. Lu, D. Li, Chem. Eng. J. 2022, 427, 132033.
- 16J.-P. Zhang, X.-M. Chen, J. Am. Chem. Soc. 2009, 131, 5516–5521.
- 17
- 17aK. Shao, H. M. Wen, C. C. Liang, X. Xiao, X. W. Gu, B. Chen, G. Qian, B. Li, Angew. Chem. Int. Ed. 2022, 61, e202211523; Angew. Chem. 2022, 134, e202211523;
- 17bS. Dutta, S. Mukherjee, O. T. Qazvini, A. K. Gupta, S. Sharma, D. Mahato, R. Babarao, S. K. Ghosh, Angew. Chem. Int. Ed. 2022, 61, e202114132; Angew. Chem. 2022, 134, e202114132;
- 17cL. Yang, L. Yan, Y. Wang, Z. Liu, J. He, Q. Fu, D. Liu, X. Gu, P. Dai, L. Li, X. Zhao, Angew. Chem. Int. Ed. 2021, 60, 4570–4574; Angew. Chem. 2021, 133, 4620–4624;
- 17dY.-Y. Xue, X.-Y. Bai, J. Zhang, Y. Wang, S.-N. Li, Y.-C. Jiang, M.-C. Hu, Q.-G. Zhai, Angew. Chem. Int. Ed. 2021, 60, 10122–10128; Angew. Chem. 2021, 133, 10210–10216;
- 17eL. Z. Cai, Z. Z. Yao, S. J. Lin, M. S. Wang, G. C. Guo, Angew. Chem. Int. Ed. 2021, 60, 18223–18230; Angew. Chem. 2021, 133, 18371–18378;
- 17fJ. Lee, C. Y. Chuah, J. Kim, Y. Kim, N. Ko, Y. Seo, K. Kim, T. H. Bae, E. Lee, Angew. Chem. Int. Ed. 2018, 57, 7869–7873; Angew. Chem. 2018, 130, 7995–7999;
- 17gH.-G. Hao, Y.-F. Zhao, D.-M. Chen, J.-M. Yu, K. Tan, S. Ma, Y. Chabal, Z.-M. Zhang, J.-M. Dou, Z.-H. Xiao, G. Day, H.-C. Zhou, T.-B. Lu, Angew. Chem. Int. Ed. 2018, 57, 16067–16071; Angew. Chem. 2018, 130, 16299–16303;
- 17hB. Zhang, X.-Y. Li, Y.-K. Lu, L. Hou, Y.-Y. Wang, Z. Zhu, Chem. Commun. 2022, 58, 6208–6211;
- 17iH. Wang, Y. Duan, Y. Wang, Y. Huang, K. Ge, S. Wang, B. Zheng, Z. Wang, J. Bai, J. Duan, ACS Appl. Mater. Interfaces 2022, 14, 13550–13559;
- 17jQ. Song, Y. Yang, F. Yuan, S. Zhu, J. Wang, S. Xiang, Z. Zhang, J. Mater. Chem. A 2022, 10, 9363–9369;
- 17kS. Laha, N. Dwarkanath, A. Sharma, D. Rambabu, S. Balasubramanian, T. K. Maji, Chem. Sci. 2022, 13, 7172–7180;
- 17lL. Fan, L. Yue, W. Sun, X. Wang, P. Zhou, Y. Zhang, Y. He, ACS Appl. Mater. Interfaces 2021, 13, 40788–40797;
- 17mP. D. Zhang, X. Q. Wu, T. He, L. H. Xie, Q. Chen, J. R. Li, Chem. Commun. 2020, 56, 5520–5523.
- 18G. Bhabha, J. Lee, D. C. Ekiert, J. Gam, I. A. Wilson, H. J. Dyson, S. J. Benkovic, P. E. Wright, Science 2011, 332, 234–238.
- 19
- 19aH. Zeng, M. Xie, T. Wang, R. J. Wei, X. J. Xie, Y. Zhao, W. Lu, D. Li, Nature 2021, 595, 542–548;
- 19bC. Gu, N. Hosono, J. J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, S. Kitagawa, Science 2019, 363, 387–391;
- 19cX. W. Zhang, D. D. Zhou, J. P. Zhang, Chem 2021, 7, 1006–1019;
- 19dC.-T. He, Z.-M. Ye, Y.-T. Xu, D.-D. Zhou, H.-L. Zhou, D. Chen, J.-P. Zhang, X.-M. Chen, Chem. Sci. 2017, 8, 7560–7565;
- 19eB. Q. Song, Q. Y. Yang, S. Q. Wang, M. Vandichel, A. Kumar, C. Crowley, N. Kumar, C. H. Deng, V. Gascon Perez, M. Lusi, H. Wu, W. Zhou, M. J. Zaworotko, J. Am. Chem. Soc. 2020, 142, 6896–6901;
- 19fA.-X. Zhu, Q.-Y. Yang, S. Mukherjee, A. Kumar, C.-H. Deng, A. A. Bezrukov, M. Shivanna, M. J. Zaworotko, Angew. Chem. Int. Ed. 2019, 58, 18212–18217; Angew. Chem. 2019, 131, 18380–18385;
- 19gJ. Q. Dong, V. Wee, S. B. Peh, D. Zhao, Angew. Chem. Int. Ed. 2021, 60, 16279–16292; Angew. Chem. 2021, 133, 16415–16428;
- 19hT. Kundu, M. Wahiduzzaman, B. B. Shah, G. Maurin, D. Zhao, Angew. Chem. Int. Ed. 2019, 58, 8073–8077; Angew. Chem. 2019, 131, 8157–8161;
- 19iS.-H. Lo, L. Feng, K. Tan, Z. Huang, S. Yuan, K.-Y. Wang, B.-H. Li, W.-L. Liu, G. S. Day, S. Tao, C.-C. Yang, T.-T. Luo, C.-H. Lin, S.-L. Wang, S. J. L. Billinge, K.-L. Lu, Y. J. Chabal, X. Zou, H.-C. Zhou, Nat. Chem. 2020, 12, 90–97;
- 19jJ. Su, S. Yuan, H. Y. Wang, L. Huang, J. Y. Ge, E. Joseph, J. S. Qin, T. Cagin, J. L. Zuo, H. C. Zhou, Nat. Commun. 2017, 8, 2008;
- 19kW. Wang, X. H. Xiong, N. X. Zhu, Z. Zeng, Z. W. Wei, M. Pan, D. Fenske, J. J. Jiang, C. Y. Su, Angew. Chem. Int. Ed. 2022, 61, e202201766; Angew. Chem. 2022, 134, e202201766;
- 19lC.-X. Chen, Z. Wei, J.-J. Jiang, Y.-Z. Fan, S.-P. Zheng, C.-C. Cao, Y.-H. Li, D. Fenske, C.-Y. Su, Angew. Chem. Int. Ed. 2016, 55, 9932–9936; Angew. Chem. 2016, 128, 10086–10090;
- 19mY. Wang, M. Fu, S. Zhou, H. Liu, X. Wang, W. Fan, Z. Liu, Z. Wang, D. Li, H. Hao, X. Lu, S. Hu, D. Sun, Chem 2022, 8, 3263–3274;
- 19nX. Cui, Z. Niu, C. Shan, L. Yang, J. Hu, Q. Wang, P. C. Lan, Y. Li, L. Wojtas, S. Ma, H. Xing, Nat. Commun. 2020, 11, 5456;
- 19oM. H. Yu, B. Space, D. Franz, W. Zhou, C. H. He, L. B. Li, R. Krishna, Z. Chang, W. Li, T. L. Hu, X. H. Bu, J. Am. Chem. Soc. 2019, 141, 17703–17712;
- 19pH. J. Yang, T. X. Trieu, X. Zhao, Y. X. Wang, Y. Wang, P. Y. Feng, X. H. Bu, Angew. Chem. Int. Ed. 2019, 58, 11757–11762; Angew. Chem. 2019, 131, 11883–11888;
- 19qQ. Gao, J. Xu, D. Cao, Z. Chang, X.-H. Bu, Angew. Chem. Int. Ed. 2016, 55, 15027–15030; Angew. Chem. 2016, 128, 15251–15254;
- 19rH. Yang, F. Guo, P. Lama, W.-Y. Gao, H. Wu, L. J. Barbour, W. Zhou, J. Zhang, B. Aguila, S. Ma, ACS Cent. Sci. 2018, 4, 1194–1200;
- 19sP. Lama, L. J. Barbour, J. Am. Chem. Soc. 2018, 140, 2145–2150;
- 19tE. J. Carrington, C. A. McAnally, A. J. Fletcher, S. P. Thompson, M. Warren, L. Brammer, Nat. Chem. 2017, 9, 882–889;
- 19uJ. Pang, C. Liu, Y. Huang, M. Wu, F. Jiang, D. Yuan, F. Hu, K. Su, G. Liu, M. Hong, Angew. Chem. Int. Ed. 2016, 55, 7478–7482; Angew. Chem. 2016, 128, 7604–7608;
- 19vD. P. Halter, R. A. Klein, M. A. Boreen, B. A. Trump, C. M. Brown, J. R. Long, Chem. Sci. 2020, 11, 6709–6716;
- 19wJ. Tian, F. Jiang, D. Yuan, L. Zhang, Q. Chen, M. Hong, Angew. Chem. Int. Ed. 2020, 59, 13101–13108; Angew. Chem. 2020, 132, 13201–13208;
- 19xJ. Tian, L. Liu, K. Zhou, Z. Hong, Q. Chen, F. Jiang, D. Yuan, Q. Sun, M. Hong, Chem. Sci. 2020, 11, 9818–9826;
- 19yC. Serre, C. Mellot-Draznieks, S. Surble, N. Audebrand, Y. Filinchuk, G. Ferey, Science 2007, 315, 1828–1831.
- 20Deposition Numbers 2213272 (for FJI-H36), 2213273 (for desolvated FJI-H36), and 2213274 (for C2H2@FJI-H36) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 21D. McIntosh, J. Phys. Chem. 1907, 11, 306–317.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.