Expanding the Toolbox of Target Directed Bio-Orthogonal Synthesis: In Situ Direct Macrocyclization by DNA Templates
Ritapa Chaudhuri
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099 India
Search for more papers by this authorThumpati Prasanth
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099 India
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Chunilal Bhawan,168, Maniktala Main Road, P.O. Bengal Chemicals, P.S. Phoolbagan, Kolkata, 700054 India
Search for more papers by this authorCorresponding Author
Dr. Jyotirmayee Dash
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099 India
Search for more papers by this authorRitapa Chaudhuri
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099 India
Search for more papers by this authorThumpati Prasanth
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099 India
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Chunilal Bhawan,168, Maniktala Main Road, P.O. Bengal Chemicals, P.S. Phoolbagan, Kolkata, 700054 India
Search for more papers by this authorCorresponding Author
Dr. Jyotirmayee Dash
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099 India
Search for more papers by this authorAbstract
Herein, we demonstrate for the first time that noncanonical DNA can direct macrocyclization-like challenging reactions to synthesize gene modulators. The planar G-quartets present in DNA G-quadruplexes (G4s) provide a size complementary reaction platform for the bio-orthogonal macrocyclization of bifunctional azide and alkyne fragments over oligo- and polymerization. G4s immobilized on gold-coated magnetic nanoparticles have been used as target templates to enable easy identification of a selective peptidomimetic macrocycle. Structurally similar macrocycles have been synthesized to understand their functional role in the modulation of gene function. The innate fluorescence of the in situ formed macrocycle has been utilized to monitor its cellular localization using a G4 antibody and its in cell formation from the corresponding azide and alkyne fragments. The successful execution of in situ macrocyclization in vitro and in cells would open up a new dimension for target-directed therapeutic applications.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202215245-sup-0001-misc_information.pdf5.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. G. Lewis, L. G. Green, F. Grynszpan, Z. Radić, P. R. Carlier, P. Taylor, M. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 1053–1057;
10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 1095–1099.
- 2N. Z. Fantoni, A. H. El-Sagheer, T. Brown, Chem. Soc. Rev. 2021, 121, 7122–7154.
- 3A. Bhardwaj, J. Kaur, M. Wuest, F. Wuest, Nat. Commun. 2017, 8, 1.
- 4X. Jin, S. S. Daher, M. Lee, B. Buttaro, R. B. Andrade, ACS Med. Chem. Lett. 2018, 9, 907–911.
- 5T. Hirose, N. Maita, H. Gouda, J. Koseki, T. Yamamoto, A. Sugawara, H. Nakano, S. Hirono, K. Shiomi, T. Watanabe, Proc. Natl. Acad. Sci. USA 2013, 110, 15892–15897.
- 6W. Xu, Y. H. Lau, G. Fischer, Y. S. Tan, A. Chattopadhyay, M. de la Roche, M. Hyvönen, C. Verma, D. R. Spring, L. S. Itzhaki, J. Am. Chem. Soc. 2017, 139, 2245–2256.
- 7I. Glassford, C. N. Teijaro, S. S. Daher, A. Weil, M. C. Small, S. K. Redhu, D. J. Colussi, M. A. Jacobson, W. E. Childers, B. Buttaro, J. Am. Chem. Soc. 2016, 138, 3136–3144.
- 8D. Panda, P. Saha, T. Das, J. Dash, Nat. Commun. 2017, 8, 16103.
- 9T. Bhattacharyya, D. Panda, J. Dash, Org. Lett. 2021, 23, 3004–3009.
- 10M. Yasuda, Y. Ma, S. Okabe, Y. Wakabayashi, D. Su, Y. T. Chang, H. Seimiya, M. Tera, K. Nagasawa, Chem. Commun. 2020, 56, 12905–12908.
- 11S. G. Rzuczek, H. Park, M. D. Disney, Angew. Chem. Int. Ed. 2014, 53, 10956–10959; Angew. Chem. 2014, 126, 11136–11139.
- 12A. T. Poulin-Kerstien, P. B. Dervan, J. Am. Chem. Soc. 2003, 125, 15811–15821.
- 13M. Di Antonio, G. Biffi, A. Mariani, E. A. Raiber, R. Rodriguez, S. Balasubramanian, Angew. Chem. Int. Ed. 2012, 51, 11073–11078; Angew. Chem. 2012, 124, 11235–11240.
- 14M.-H. Hu, X. Chen, S.-B. Chen, T.-M. Ou, M. Yao, L.-Q. Gu, Z.-S. Huang, J.-H. Tan, Sci. Rep. 2015, 5, 13174.
- 15V. Martí-Centelles, M. D. Pandey, M. I. Burguete, S. V. Luis, Chem. Rev. 2015, 115, 8736–8834.
- 16A. Granzhan, D. Monchaud, N. Saettel, A. Guédin, J. L. Mergny, M. P. Teulade-Fichou, J. Nucleic Acids 2010, 2010, 525862.
- 17A. Granzhan, D. Monchaud, N. Saettel, A. Guédin, J. L. Mergny, M. P. Teulade-Fichou, J. Nucleic Acids 2010, 2010, 460561.
- 18C. Heinis, Nat. Chem. Biol. 2014, 10, 696–698.
- 19A. Isidro-Llobet, T. Murillo, P. Bello, A. Cilibrizzi, J. T. Hodgkinson, W. R. Galloway, A. Bender, M. Welch, D. R. Spring, Proc. Natl. Acad. Sci. USA 2011, 108, 6793–6798.
- 20V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen, Chem. Rev. 2016, 116, 3086–3240.
- 21Y. H. Lau, Y. Wu, M. Rossmann, B. X. Tan, P. de Andrade, Y. S. Tan, C. Verma, G. J. McKenzie, A. R. Venkitaraman, M. Hyvönen, Angew. Chem. Int. Ed. 2015, 54, 15410–15413; Angew. Chem. 2015, 127, 15630–15633.
- 22D. A. Heller, Y. Levi, J. M. Pelet, J. C. Doloff, J. Wallas, G. W. Pratt, S. Jiang, G. Sahay, A. Schroeder, J. E. Schroeder, Adv. Mater. 2013, 25, 1449–1454.
- 23D. Pasini, Molecules 2013, 18, 9512–9530.
- 24R. Hänsel-Hertsch, M. Di Antonio, S. Balasubramanian, Nat. Rev. Mol. Cell Biol. 2017, 18, 279–284.
- 25J. Spiegel, S. Adhikari, S. Balasubramanian, Trends Chem. 2020, 2, 123–136.
- 26M.-H. Hu, T.-Y. Wu, Q. Huang, G. Jin, Nucleic Acids Res. 2019, 47, 10529–10542.
- 27W. Long, B.-X. Zheng, Y. Li, X.-H. Huang, D.-M. Lin, C.-C. Chen, J.-Q. Hou, T.-M. Ou, W.-L. Wong, K. Zhang, Nucleic Acids Res. 2022, 50, 1829–1848.
- 28J. Dickerhoff, J. Dai, D. Yang, Nucleic Acids Res. 2021, 49, 5905–5915.
- 29F. Ilaria, P. Valentina, R. N. Sara, D. Filippo, Int. J. Biol. Macromol. 2022, 204, 89–102.
- 30M. Y. Kim, H. Vankayalapati, K. Shin-Ya, K. Wierzba, L. H. Hurley, J. Am. Chem. Soc. 2002, 124, 2098–2099.
- 31G. S. Minhas, D. S. Pilch, J. E. Kerrigan, E. J. LaVoie, J. E. Rice, Bioorg. Med. Chem. Lett. 2006, 16, 3891–3895.
- 32C. M. Barbieri, A. R. Srinivasan, S. G. Rzuczek, J. E. Rice, E. J. LaVoie, D. S. Pilch, Nucleic Acids Res. 2007, 35, 3272–3286.
- 33A. Siddiqui-Jain, C. L. Grand, D. J. Bearss, L. H. Hurley, Proc. Natl. Acad. Sci. USA 2002, 99, 11593–11598.
- 34J. Seenisamy, S. Bashyam, V. Gokhale, H. Vankayalapati, D. Sun, A. Siddiqui-Jain, N. Streiner, K. Shin-Ya, E. White, W. D. Wilson, J. Am. Chem. Soc. 2005, 127, 2944–2959.
- 35M. Tera, H. Ishizuka, M. Takagi, M. Suganuma, K. Shinya, K. Nagasawa, Angew. Chem. Int. Ed. 2008, 47, 5557–5560; Angew. Chem. 2008, 120, 5639–5642.
- 36Y. Ma, K. Iida, S. Sasaki, T. Hirokawa, B. Heddi, A. T. Phan, K. Nagasawa, Molecules 2019, 24, 263.
- 37E. S. Baker, J. T. Lee, J. L. Sessler, M. T. Bowers, J. Am. Chem. Soc. 2006, 128, 2641–2648.
- 38P. S. Shirude, E. R. Gillies, S. Ladame, F. Godde, K. Shin-Ya, I. Huc, S. Balasubramanian, J. Am. Chem. Soc. 2007, 129, 11890–11891.
- 39P. Maleki, Y. Ma, K. Iida, K. Nagasawa, H. Balci, Nucleic Acids Res. 2017, 45, 288–295.
- 40Deposition number 2150728 (for M4) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service (see also the Supporting Information).
- 41W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33–38.
- 42S. Müller, D. A. Sanders, M. Di Antonio, S. Matsis, J. F. Riou, R. Rodriguez, S. Balasubramanian, Org. Biomol. Chem. 2012, 10, 6537–6546.
- 43A. De Cian, E. DeLemos, J. L. Mergny, M. P. Teulade-Fichou, D. Monchaud, J. Am. Chem. Soc. 2007, 129, 1856–1857.
- 44K. K. Frederick, M. S. Marlow, K. G. Valentine, A. J. Wand, Nature 2007, 448, 325–329.
- 45G. Biffi, D. Tannahill, J. McCafferty, S. Balasubramanian, Nat. Chem. 2013, 5, 182–186.
- 46P. Parvatkar, N. Kato, M. Uesugi, S. I. Sato, J. Ohkanda, J. Am. Chem. Soc. 2015, 137, 15624–15627.
- 47A. Battigelli, B. Almeida, A. Shukla, Bioconjugate Chem. 2022, 33, 263–271.
- 48M. L. Smeenk, J. Agramunt, K. M. Bonger, Curr. Opin. Chem. Biol. 2021, 60, 79–88.
- 49Y. Takayama, K. Kusamori, M. Nishikawa, Molecules 2019, 24, 172.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.