Quantitative Single-Molecule Electrochemiluminescence Bioassay
Wenxin Zhu
Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Validation (equal), Visualization (lead), Writing - original draft (equal), Writing - review & editing (supporting)
Search for more papers by this authorJinrun Dong
Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Validation (equal)
Search for more papers by this authorGuoxiang Ruan
Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China
Contribution: Data curation (supporting), Formal analysis (supporting), Resources (lead), Validation (supporting)
Search for more papers by this authorYuan Zhou
Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Contribution: Investigation (supporting), Validation (lead)
Search for more papers by this authorCorresponding Author
Prof. Jiandong Feng
Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Research Center for Quantum Sensing, Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou, 311121 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Methodology (lead), Supervision (lead), Validation (lead), Writing - review & editing (lead)
Search for more papers by this authorWenxin Zhu
Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Validation (equal), Visualization (lead), Writing - original draft (equal), Writing - review & editing (supporting)
Search for more papers by this authorJinrun Dong
Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Validation (equal)
Search for more papers by this authorGuoxiang Ruan
Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China
Contribution: Data curation (supporting), Formal analysis (supporting), Resources (lead), Validation (supporting)
Search for more papers by this authorYuan Zhou
Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Contribution: Investigation (supporting), Validation (lead)
Search for more papers by this authorCorresponding Author
Prof. Jiandong Feng
Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Research Center for Quantum Sensing, Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou, 311121 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Methodology (lead), Supervision (lead), Validation (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
A single-molecule electrochemiluminescence bioassay is developed here which allows imaging and direct quantification of single biomolecules. Imaging single biomolecules is realized by localizing the electrochemiluminescence events of the labeled molecules. Such an imaging system allows mapping the spatial distribution of biomolecules with electrochemiluminescence and contains quantitative single-molecule insights. We further quantify biomolecules by spatiotemporally merging the repeated reactions at one molecule site and then counting the clustered molecules. The proposed single-molecule electrochemiluminescence bioassay is used to detect carcinoembryonic antigen, showing a limit of detection of 67 attomole concentration which is 10 000 times better than conventional electrochemiluminescence bioassays. This spatial resolution and sensitivity enable single-molecule electrochemiluminescence bioassay a new toolbox for both specific bioimaging and ultrasensitive quantitative analysis.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214419-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. S. Pepe, R. Etzioni, Z. Feng, J. D. Potter, M. L. Thompson, M. Thornquist, M. Winget, Y. Yasui, J. Natl. Cancer Inst. 2001, 93, 1054–1061.
- 2L. Wu, X. Qu, Chem. Soc. Rev. 2015, 44, 2963–2997.
- 3
- 3aD. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, D. C. Duffy, Nat. Biotechnol. 2010, 28, 595–599;
- 3bL. Cohen, N. Cui, Y. Cai, P. M. Garden, X. Li, D. A. Weitz, D. R. Walt, ACS Nano 2020, 14, 9491–9501.
- 4
- 4aF. Deiss, C. N. LaFratta, M. Symer, T. M. Blicharz, N. Sojic, D. R. Walt, J. Am. Chem. Soc. 2009, 131, 6088–6089;
- 4bJ. Zhang, S. Arbault, N. Sojic, D. Jiang, Annu. Rev. Anal. Chem. 2019, 12, 275–295;
- 4cK. Sakanoue, A. Fiorani, C. I. Santo, Irkham, G. Valenti, F. Paolucci, Y. Einaga, ACS Sens. 2022, 7, 1145–1155.
- 5J. Feng, Curr. Opin. Electrochem. 2022, 34, 101000.
- 6M. M. Collinson, R. M. Wightman, Science 1995, 268, 1883–1885.
- 7
- 7aL. Zhang, S. Dong, Anal. Chem. 2006, 78, 5119–5123;
- 7bA. Zanut, F. Palomba, M. Rossi Scota, S. Rebeccani, M. Marcaccio, D. Genovese, E. Rampazzo, G. Valenti, F. Paolucci, L. Prodi, Angew. Chem. Int. Ed. 2020, 59, 21858–21863; Angew. Chem. 2020, 132, 22042–22047;
- 7cY. Liu, H. Zhang, B. Li, J. Liu, D. Jiang, B. Liu, N. Sojic, J. Am. Chem. Soc. 2021, 143, 17910–17914.
- 8
- 8aJ. Dong, Y. Lu, Y. Xu, F. Chen, J. Yang, Y. Chen, J. Feng, Nature 2021, 596, 244–249;
- 8bJ. Dong, Y. Xu, Z. Zhang, J. Feng, Angew. Chem. Int. Ed. 2022, 61, e202200187; Angew. Chem. 2022, 134, e202200187.
- 9S. Voci, B. Goudeau, G. Valenti, A. Lesch, M. Jovic, S. Rapino, F. Paolucci, S. Arbault, N. Sojic, J. Am. Chem. Soc. 2018, 140, 14753–14760.
- 10
- 10aM. Sentic, M. Milutinovic, F. Kanoufi, D. Manojlovic, S. Arbault, N. Sojic, Chem. Sci. 2014, 5, 2568–2572;
- 10bA. Zanut, A. Fiorani, S. Canola, T. Saito, N. Ziebart, S. Rapino, S. Rebeccani, A. Barbon, T. Irie, H. P. Josel, F. Negri, M. Marcaccio, M. Windfuhr, K. Imai, G. Valenti, F. Paolucci, Nat. Commun. 2020, 11, 2668.
- 11X. Zhou, D. Zhu, Y. Liao, W. Liu, H. Liu, Z. Ma, D. Xing, Nat. Protoc. 2014, 9, 1146–1159.
- 12G. Valenti, A. Fiorani, E. Villani, A. Zanut, F. Paolucci in Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays, The Royal Society of Chemistry, London, 2019, pp. 159–175.
10.1039/9781788015776-00159 Google Scholar
- 13S. Benchimol, A. Fuks, S. Jothy, N. Beauchemin, K. Shirota, C. P. Stanners, Cell 1989, 57, 327–334.
- 14W. Miao, J. P. Choi, A. J. Bard, J. Am. Chem. Soc. 2002, 124, 14478–14485.
- 15Y. Zu, A. J. Bard, Anal. Chem. 2001, 73, 3960–3964.
- 16P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, A. Radenovic, Nat. Methods 2011, 8, 527–528.
- 17
- 17aL. G. Jensen, T. Y. Hoh, D. J. Williamson, J. Griffie, D. Sage, P. Rubin-Delanchy, D. M. Owen, Nat. Methods 2022, 19, 594–602;
- 17bH. Deschout, T. Lukes, A. Sharipov, D. Szlag, L. Feletti, W. Vandenberg, P. Dedecker, J. Hofkens, M. Leutenegger, T. Lasser, A. Radenovic, Nat. Commun. 2016, 7, 13693.
- 18N. E. Tokel-Takvoryan, R. E. Hemingway, A. J. Bard, J. Am. Chem. Soc. 1973, 95, 6582–6589.
- 19F. Ma, Y. Li, B. Tang, C. Y. Zhang, Acc. Chem. Res. 2016, 49, 1722–1730.
- 20Elecsys CEA. 11731629322. Roche Diagnostics GmbH.
- 21
- 21aF. Du, Z. Dong, Y. Guan, A. M. Zeid, D. Ma, J. Feng, D. Yang, G. Xu, Anal. Chem. 2022, 94, 2189–2194;
- 21bF. Du, Y. Chen, C. Meng, B. Lou, W. Zhang, G. Xu, Curr. Opin. Electrochem. 2021, 28, 100725.
- 22
- 22aW. Guo, H. Ding, C. Gu, Y. Liu, X. Jiang, B. Su, Y. Shao, J. Am. Chem. Soc. 2018, 140, 15904–15915;
- 22bG. Liu, B. K. Jin, C. Ma, Z. Chen, J. J. Zhu, Anal. Chem. 2019, 91, 6363–6370.
- 23B. Nacmias, Neurology 2022, 98, 821–822.
- 24Quanterix. https://www.quanterix.com/therapeutic-areas/neurology/.
- 25S. M. Hanash, S. J. Pitteri, V. M. Faca, Nature 2008, 452, 571–579.
- 26Z. Farka, M. J. Mickert, M. Pastucha, Z. Mikusova, P. Skladal, H. H. Gorris, Angew. Chem. Int. Ed. 2020, 59, 10746–10773; Angew. Chem. 2020, 132, 10836–10865.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.