Activity Trends and Mechanisms in Peroxymonosulfate-Assisted Catalytic Production of Singlet Oxygen over Atomic Metal-N-C Catalysts
Yun Gao
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Tongwei Wu
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
These authors contributed equally to this work.
Search for more papers by this authorChengdong Yang
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
These authors contributed equally to this work.
Search for more papers by this authorChao Ma
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorZhenyang Zhao
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorZihe Wu
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorDr. Sujiao Cao
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorDr. Wei Geng
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorProf. Yi Wang
College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorCorresponding Author
Prof. Yongyi Yao
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Prof. Yanning Zhang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorCorresponding Author
Prof. Chong Cheng
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Search for more papers by this authorYun Gao
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Tongwei Wu
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, China
These authors contributed equally to this work.
Search for more papers by this authorChengdong Yang
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
These authors contributed equally to this work.
Search for more papers by this authorChao Ma
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorZhenyang Zhao
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorZihe Wu
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorDr. Sujiao Cao
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorDr. Wei Geng
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorProf. Yi Wang
College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorCorresponding Author
Prof. Yongyi Yao
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Prof. Yanning Zhang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorCorresponding Author
Prof. Chong Cheng
College of Biomass Science and Engineering, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 China
Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Search for more papers by this authorAbstract
We synthesized a series of carbon-supported atomic metal-N-C catalysts (M-SACs: M=Mn, Fe, Co, Ni, Cu) with similar structural and physicochemical properties to uncover their catalytic activity trends and mechanisms. The peroxymonosulfate (PMS) catalytic activity trends are Fe-SAC>Co-SAC>Mn-SAC>Ni-SAC>Cu-SAC, and Fe-SAC displays the best single-site kinetic value (1.65×105 min−1 mol−1) compared to the other metal-N-C species. First-principles calculations indicate that the most reasonable reaction pathway for 1O2 production is PMS→OH*→O*→1O2; M-SACs that exhibit moderate and near-average Gibbs free energies in each reaction step have a better catalytic activity, which is the key for the outstanding performance of Fe-SACs. This study gives the atomic-scale understanding of fundamental catalytic trends and mechanisms of PMS-assisted reactive oxygen species production via M-SACs, thus providing guidance for developing M-SACs for catalytic organic pollutant degradation.
Conflict of interest
The authors have filed a provisional patent application regarding the synthesis of M-SACs for PMS-assisted ROS production.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202109530-sup-0001-misc_information.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Xu, X. Zheng, Z. Feng, Z. Lu, Z. Zhang, W. Huang, Y. Li, D. Vuckovic, Y. Li, S. Dai, G. Chen, K. Wang, H. Wang, J. K. Chen, W. Mitch, Y. Cui, Nat. Sustainability 2021, 4, 233.
- 2Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu, C. Wang, D. Wang, G. Wang, Chem 2019, 5, 664.
- 3S. An, G. Zhang, T. Wang, W. Zhang, K. Li, C. Song, J. T. Miller, S. Miao, J. Wang, X. Guo, ACS Nano 2018, 12, 9441.
- 4M. Y. Kuo, C. F. Hsiao, Y. H. Chiu, T. H. Lai, M. J. Fang, J. Y. Wu, J. W. Chen, C. L. Wu, K. H. Wei, H. C. Lin, Y. J. Hsu, Appl. Catal. B 2019, 242, 499.
- 5M. Abdel Salam, N. Y. Owija, S. Kosa, Adv. Fiber Mater. 2021, 18, 2391.
- 6J. Yang, D. Zeng, Q. Zhang, R. Cui, M. Hassan, L. Dong, J. Li, Y. He, Appl. Catal. B 2020, 279, 119363.
- 7X. Zhang, Y. Zhang, Z. Yu, X. Wei, W. D. Wu, X. Wang, Z. Wu, Appl. Catal. B 2020, 263, 118335.
- 8S. Yang, X. Qiu, P. Jin, M. Dzakpasu, X. C. Wang, Q. Zhang, L. zhang, L. Yang, D. Ding, W. Wang, K. Wu, Chem. Eng. J. 2018, 353, 329.
- 9W. Ma, N. Wang, Y. Du, T. Tong, L. Zhang, K.-Y. Andrew Lin, X. Han, Chem. Eng. J. 2019, 356, 1022.
- 10N. Guo, H. Xue, A. Bao, Z. Wang, J. Sun, T. Song, X. Ge, W. Zhang, K. Huang, F. He, Q. Wang, Angew. Chem. Int. Ed. 2020, 59, 13778; Angew. Chem. 2020, 132, 13882.
- 11X. Li, X. Huang, S. Xi, S. Miao, J. Ding, W. Cai, S. Liu, X. Yang, H. Yang, J. Gao, J. Wang, Y. Huang, T. Zhang, B. Liu, J. Am. Chem. Soc. 2018, 140, 12469.
- 12C. Yang, M. Zhou, C. He, Y. Gao, S. Li, X. Fan, Y. Lin, F. Cheng, P. Zhu, C. Cheng, Nano-Micro Lett. 2019, 11, 87.
- 13Y. Chen, G. Zhang, H. Liu, J. Qu, Angew. Chem. Int. Ed. 2019, 58, 8134; Angew. Chem. 2019, 131, 8218.
- 14T. Zeng, M. Yu, H. Zhang, Z. He, J. Chen, S. Song, Catal. Sci. Technol. 2017, 7, 396.
- 15X. Li, Z. Ao, J. Liu, H. Sun, A. I. Rykov, J. Wang, ACS Nano 2016, 10, 11532.
- 16F. Xiao, Z. Wang, J. Fan, T. Majima, H. Zhao, G. Zhao, Angew. Chem. Int. Ed. 2021, 60, 10375; Angew. Chem. 2021, 133, 10463.
- 17S. W. Xiong, Y. Yu, P. Wang, M. Liu, S. H. Chen, X. Z. Yin, L. X. Wang, H. Wang, Adv. Fiber Mater. 2020, 2, 246.
- 18B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C. Cheng, Adv. Mater. 2021, 33, 2006042.
- 19S. Li , B. Chen, Y. Wang, M.-Y. Ye, P. A. van Aken, C. Cheng, A. Thomas, Nat. Mater. 2021, https://doi.org/10.1038/s41563-021-01006-2.
- 20Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 2011, 4.
- 21M. Primbs, Y. Sun, A. Roy, D. Malko, A. Mehmood, M.-T. Sougrati, P.-Y. Blanchard, G. Granozzi, T. Kosmala, G. Daniel, P. Atanassov, J. Sharman, C. Durante, A. Kucernak, D. Jones, F. Jaouen, P. Strasser, Energy Environ. Sci. 2020, 13, 2480.
- 22L. Du, L. Xing, G. Zhang, X. Liu, D. Rawach, S. Sun, SusMat 2021, 1, 150.
- 23E. Jung, H. Shin, B. H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. Hooch Antink, S. Park, K. S. Lee, S. P. Cho, J. S. Yoo, Y. E. Sung, T. Hyeon, Nat. Mater. 2020, 19, 436.
- 24T. Marshall Roth, N. J. Libretto, A. T. Wrobel, K. J. Anderton, M. L. Pegis, N. D. Ricke, T. V. Voorhis, J. T. Miller, Y. Surendranath, Nat. Commun. 2020, 11, 5283.
- 25See Ref. [18].
- 26L. Zhou, S. Y. Lu, S. Guo, SusMat 2021, 1, 194.
- 27L. Ma, F. Jiang, X. Fan, L. Wang, C. He, M. Zhou, S. Li, H. Luo, C. Cheng, L. Qiu, Adv. Mater. 2020, 32, 2003065.
- 28X. Mi, P. Wang, S. Xu, L. Su, H. Zhong, H. Wang, Y. Li, S. Zhan, Angew. Chem. Int. Ed. 2021, 60, 4588; Angew. Chem. 2021, 133, 4638.
- 29M. Huo, L. Wang, Y. Wang, Y. Chen, J. Shi, ACS Nano 2019, 13, 2643.
- 30Y. Sun, L. Silvioli, N. R. Sahraie, W. Ju, J. Li, A. Zitolo, S. Li, A. Bagger, L. Arnarson, X. Wang, T. Moeller, D. Bernsmeier, J. Rossmeisl, F. Jaouen, P. Strasser, J. Am. Chem. Soc. 2019, 141, 12372.
- 31X. Xie, C. He, B. Li, Y. He, D. A. Cullen, E. C. Wegener, A. J. Kropf, U. Martinez, Y. Cheng, M. H. Engelhard, M. E. Bowden, M. Song, T. Lemmon, X. S. Li, Z. Nie, J. Liu, D. J. Myers, P. Zelenay, G. Wang, G. Wu, V. Ramani, Y. Shao, Nat. Catal. 2020, 3, 1044.
- 32X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259.
- 33M. Luneau, T. Shirman, A. Filie, J. Timoshenko, W. Chen, A. Trimpalis, M. Flytzani-Stephanopoulos, E. Kaxiras, A. I. Frenkel, J. Aizenberg, C. M. Friend, R. J. Madix, Chem. Mater. 2019, 31, 5759.
- 34Y. Zhou, Y. Yu, D. Ma, A. C. Foucher, L. Xiong, J. Zhang, E. A. Stach, Q. Yue, Y. Kang, ACS Catal. 2021, 11, 74.
- 35Y. Gao, C. Yang, M. Zhou, C. He, S. Cao, Y. Long, S. Li, Y. Lin, P. Zhu, C. Cheng, Small 2020, 16, 2005060.
- 36W. Chen, J. Pei, C. T. He, J. Wan, H. Ren, Y. Wang, J. Dong, K. Wu, W. C. Cheong, J. Mao, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Adv. Mater. 2018, 30, 1800396.
- 37G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. Loo, W. D. Wei, Y. Yang, J. T. Hupp, F. Huo, Nat. Chem. 2012, 4, 310.
- 38Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan, Z. Yang, C. Zhao, J. Wang, C. Zhao, X. Wang, F. Zhou, Z. Zhuang, Y. Wu, Y. Li, Nat. Catal. 2018, 1, 781.
- 39C. Cheng, S. Li, Y. Xia, L. Ma, C. Nie, C. Roth, A. Thomas, R. Haag, Adv. Mater. 2018, 30, 1802669.
- 40Q.-Y. Liu, Y. Zhong, Z.-Z. Jiang, K. Chen, S. Ma, P.-F. Wang, W. Wang, L. Zhou, M.-D. Luoshan, Q.-Q. Wang, J. Mater. Chem. C 2020, 8, 4869.
- 41T. Su, H. Xiao, W. Shen, C. Hu, C. Tang, J. Phys. Chem. C 2018, 122, 27761.
- 42L. Zhu, J. Ji, J. Liu, S. Mine, M. Matsuoka, J. Zhang, M. Xing, Angew. Chem. Int. Ed. 2020, 59, 13968; Angew. Chem. 2020, 132, 14072.
- 43R. Li, M. Cai, Z. Xie, Q. Zhang, Y. Zeng, H. Liu, G. Liu, W. Lv, Appl. Catal. B 2019, 244, 974.
- 44B. Lu, L. Guo, F. Wu, Y. Peng, J. E. Lu, T. J. Smart, N. Wang, Y. Z. Finfrock, D. Morris, P. Zhang, N. Li, P. Gao, Y. Ping, S. Chen, Nat. Commun. 2019, 10, 631.
- 45Y. Zhou, J. Jiang, Y. Gao, J. Ma, S. Y. Pang, J. Li, X. T. Lu, L. P. Yuan, Environ. Sci. Technol. 2015, 49, 12941.
- 46J. N. Zhu, X. Q. Zhu, F. F. Cheng, P. Li, F. Wang, Y. W. Xiao, W. W. Xiong, Appl. Catal. B 2019, 256, 117830.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.