An Open-Shell Coronoid with Hybrid Chichibabin–Schlenk Conjugation
Bibek Prajapati
Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorDuy-Khoi Dang
Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109 USA
Search for more papers by this authorProf. Piotr J. Chmielewski
Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorDr. Marcin A. Majewski
Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorProf. Tadeusz Lis
Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorProf. Carlos J. Gómez-García
Departamento de Química Inorgánica and Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna, Spain
Search for more papers by this authorCorresponding Author
Prof. Paul M. Zimmerman
Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109 USA
Search for more papers by this authorCorresponding Author
Prof. Marcin Stępień
Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorBibek Prajapati
Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorDuy-Khoi Dang
Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109 USA
Search for more papers by this authorProf. Piotr J. Chmielewski
Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorDr. Marcin A. Majewski
Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorProf. Tadeusz Lis
Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorProf. Carlos J. Gómez-García
Departamento de Química Inorgánica and Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna, Spain
Search for more papers by this authorCorresponding Author
Prof. Paul M. Zimmerman
Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109 USA
Search for more papers by this authorCorresponding Author
Prof. Marcin Stępień
Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorDedicated to Professor Lechosław Latos-Grażyński on the occasion of his 70th birthday
Abstract
A hexaradicaloid molecule with alternating Kekulé and non-Kekulé connectivities between adjacent spin centers was obtained by fusing two conjugation motifs in Chichibabin and Schlenk hydrocarbons into a coronoid structure. 1H NMR, ESR, and SQUID experiments and computational analyses show that the system has a singlet ground state with a significant hexaradicaloid character (γ0=0.826, γ1=γ2=0.773). It has multiple thermally accessible high-spin states (up to the septet), with uniform energy gaps of ca 1.0 kcal mol−1 between consecutive multiplicities. In line with its open-shell character, the coronoid has a small electronic band gap (ca. 0.8 eV) and undergoes two consecutive one-electron oxidations at low potentials, yielding cationic forms with extended near-infrared absorption. The hexaradicaloid, which combines open-shell and macrocyclic contributions to its π conjugation, is an example of a design strategy for multistate spin switches and redox-amphoteric NIR dyes.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202109273-sup-0001-misc_information.pdf5.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Gomberg, Ber. Dtsch. Chem. Ges. 1900, 33, 3150–3163.
- 2A. E. Tschitschibabin, Ber. Dtsch. Chem. Ges. 1907, 40, 1810–1819.
- 3W. Schlenk, M. Brauns, Ber. Dtsch. Chem. Ges. 1915, 48, 661–669.
- 4D. A. Dougherty, Acc. Chem. Res. 1991, 24, 88–94.
- 5A. Rajca, Chem. Rev. 1994, 94, 871–893.
- 6M. Abe, Chem. Rev. 2013, 113, 7011–7088.
- 7Z. Sun, Z. Zeng, J. Wu, Acc. Chem. Res. 2014, 47, 2582–2591.
- 8Z. Zeng, X. Shi, C. Chi, J. T. L. Navarrete, J. Casado, J. Wu, Chem. Soc. Rev. 2015, 44, 6578–6596.
- 9T. Kubo, Chem. Rec. 2015, 15, 218–232.
- 10N. M. Gallagher, A. Olankitwanit, A. Rajca, J. Org. Chem. 2015, 80, 1291–1298.
- 11C. K. Frederickson, B. D. Rose, M. M. Haley, Acc. Chem. Res. 2017, 50, 977–987.
- 12J. Casado, Top. Curr. Chem. 2017, 375, 73.
- 13Y. Tobe, Top. Curr. Chem. 2018, 376, 12.
- 14C. Liu, Y. Ni, X. Lu, G. Li, J. Wu, Acc. Chem. Res. 2019, 52, 2309—2321.
- 15G. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall, I. Arrechea-Marcos, G. L. Espejo, R. Ponce Ortiz, C. J. Gómez-García, L. N. Zakharov, M. Nakano, H. Ottosson, J. Casado, M. M. Haley, Nat. Chem. 2016, 8, 753–759.
- 16Y. Ni, S. Lee, M. Son, N. Aratani, M. Ishida, A. Samanta, H. Yamada, Y.-T. Chang, H. Furuta, D. Kim, J. Wu, Angew. Chem. Int. Ed. 2016, 55, 2815–2819; Angew. Chem. 2016, 128, 2865–2869.
- 17K. Okino, D. Sakamaki, S. Seki, ACS Mater. Lett. 2019, 1, 25–29.
- 18X. Gu, T. Y. Gopalakrishna, H. Phan, Y. Ni, T. S. Herng, J. Ding, J. Wu, Angew. Chem. Int. Ed. 2017, 56, 15383–15387; Angew. Chem. 2017, 129, 15585–15589.
- 19Y. Ni, T. Y. Gopalakrishna, H. Phan, T. Kim, T. S. Herng, Y. Han, T. Tao, J. Ding, D. Kim, J. Wu, Nat. Chem. 2020, 12, 242–248.
- 20P. Ravat, T. Šolomek, D. Häussinger, O. Blacque, M. Juríček, J. Am. Chem. Soc. 2018, 140, 10839–10847.
- 21D. Shimizu, Y. Ide, T. Ikeue, A. Osuka, Angew. Chem. Int. Ed. 2019, 58, 5023–5027; Angew. Chem. 2019, 131, 5077–5081.
- 22D. Beaudoin, O. Levasseur-Grenon, T. Maris, J. D. Wuest, Angew. Chem. Int. Ed. 2016, 55, 894–898; Angew. Chem. 2016, 128, 906–910.
- 23K. Oda, S. Hiroto, H. Shinokubo, J. Mater. Chem. C 2017, 5, 5310–5315.
- 24H. Yokoi, S. Hiroto, H. Shinokubo, J. Am. Chem. Soc. 2018, 140, 4649–4655.
- 25L. Yuan, Y. Han, T. Tao, H. Phan, C. Chi, Angew. Chem. Int. Ed. 2018, 57, 9023–9027; Angew. Chem. 2018, 130, 9161–9165.
- 26L. Moshniaha, M. Żyła-Karwowska, P. J. Chmielewski, T. Lis, J. Cybińska, E. Gońka, J. Oschwald, T. Drewello, S. M. Rivero, J. Casado, M. Stępień, J. Am. Chem. Soc. 2020, 142, 3626–3635.
- 27K. Sahara, M. Abe, H. Zipse, T. Kubo, J. Am. Chem. Soc. 2020, 142, 5408–5418.
- 28H. Miyoshi, S. Nobusue, A. Shimizu, Y. Tobe, Chem. Soc. Rev. 2015, 44, 6560–6577.
- 29S. Nobusue, H. Miyoshi, A. Shimizu, I. Hisaki, K. Fukuda, M. Nakano, Y. Tobe, Angew. Chem. Int. Ed. 2015, 54, 2090–2094; Angew. Chem. 2015, 127, 2118–2122.
- 30S. Das, T. S. Herng, J. L. Zafra, P. M. Burrezo, M. Kitano, M. Ishida, T. Y. Gopalakrishna, P. Hu, A. Osuka, J. Casado, J. Ding, D. Casanova, J. Wu, J. Am. Chem. Soc. 2016, 138, 7782–7790.
- 31C. Liu, M. E. Sandoval-Salinas, Y. Hong, T. Y. Gopalakrishna, H. Phan, N. Aratani, T. S. Herng, J. Ding, H. Yamada, D. Kim, D. Casanova, J. Wu, Chem 2018, 4, 1586–1595.
- 32X. Lu, T. Y. Gopalakrishna, H. Phan, T. S. Herng, Q. Jiang, C. Liu, G. Li, J. Ding, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 13052–13056; Angew. Chem. 2018, 130, 13236–13240.
- 33H. Gregolińska, M. Majewski, P. J. Chmielewski, J. Gregoliński, A. Chien, J. Zhou, Y.-L. Wu, Y. J. Bae, M. R. Wasielewski, P. M. Zimmerman, M. Stępień, J. Am. Chem. Soc. 2018, 140, 14474–14480.
- 34X. Lu, T. Y. Gopalakrishna, Y. Han, Y. Ni, Y. Zou, J. Wu, J. Am. Chem. Soc. 2019, 141, 5934–5941.
- 35X. Lu, D. An, Y. Han, Y. Zou, Y. Qiao, N. Zhang, D. Chang, J. Wu, Y. Liu, Chem. Sci. 2021, 12, 3952–3957.
- 36M. Stępień, Chem 2018, 4, 1481–1483.
- 37L. K. Montgomery, J. C. Huffman, E. A. Jurczak, M. P. Grendze, J. Am. Chem. Soc. 1986, 108, 6004–6011.
- 38G. Kothe, K.-H. Denkel, W. Sümmermann, Angew. Chem. Int. Ed. Engl. 1970, 9, 906–907; Angew. Chem. 1970, 82, 935–937.
- 39A. Shimizu, R. Kishi, M. Nakano, D. Shiomi, K. Sato, T. Takui, I. Hisaki, M. Miyata, Y. Tobe, Angew. Chem. Int. Ed. 2013, 52, 6076–6079; Angew. Chem. 2013, 125, 6192–6195.
- 40M. A. Majewski, P. J. Chmielewski, A. Chien, Y. Hong, T. Lis, M. Witwicki, D. Kim, P. M. Zimmerman, M. Stępień, Chem. Sci. 2019, 10, 3413–3420.
- 41M. A. Majewski, Y. Hong, T. Lis, J. Gregoliński, P. J. Chmielewski, J. Cybińska, D. Kim, M. Stępień, Angew. Chem. Int. Ed. 2016, 55, 14072–14076; Angew. Chem. 2016, 128, 14278–14282.
- 42Deposition Numbers 2087057 (for polymorph A), and 2087056 (for polymorph B) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 43D. Myśliwiec, M. Stępień, Angew. Chem. Int. Ed. 2013, 52, 1713–1717; Angew. Chem. 2013, 125, 1757–1761.
- 44M. A. Majewski, T. Lis, J. Cybińska, M. Stępień, Chem. Commun. 2015, 51, 15094–15097.
- 45H. Hou, X.-J. Zhao, C. Tang, Y.-Y. Ju, Z.-Y. Deng, X.-R. Wang, L.-B. Feng, D.-H. Lin, X. Hou, A. Narita, K. Müllen, Y.-Z. Tan, Nat. Commun. 2020, 11, 3976.
- 46F. Diederich, H. A. Staab, Angew. Chem. Int. Ed. Engl. 1978, 17, 372–374; Angew. Chem. 1978, 90, 383–385.
- 47U. Beser, M. Kastler, A. Maghsoumi, M. Wagner, C. Castiglioni, M. Tommasini, A. Narita, X. Feng, K. Müllen, J. Am. Chem. Soc. 2016, 138, 4322–4325.
- 48Y. Yang, M. Chu, Q. Miao, Org. Lett. 2018, 20, 4259–4262.
- 49B. Kumar, R. L. Viboh, M. C. Bonifacio, W. B. Thompson, J. C. Buttrick, B. C. Westlake, M.-S. Kim, R. W. Zoellner, S. A. Varganov, P. Mörschel, J. Teteruk, M. U. Schmidt, B. T. King, Angew. Chem. Int. Ed. 2012, 51, 12795–12800; Angew. Chem. 2012, 124, 12967–12972.
- 50N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877–910.
- 51S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- 52T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51–57.
- 53B. O. Roos, Int. J. Quantum Chem. 1980, 18, 175–189.
10.1002/qua.560180822 Google Scholar
- 54B. O. Roos, P. R. Taylor, P. E. M. Sigbahn, Chem. Phys. 1980, 48, 157–173.
- 55F. Aquilante, T. B. Pedersen, R. Lindh, J. Chem. Phys. 2007, 126, 194106.
- 56J. Boström, F. Aquilante, T. B. Pedersen, R. Lindh, J. Chem. Theory Comput. 2009, 5, 1545–1553.
- 57P. M. Zimmerman, F. Bell, M. Goldey, A. T. Bell, M. Head-Gordon, J. Chem. Phys. 2012, 137, 164110.
- 58F. Bell, P. M. Zimmerman, D. Casanova, M. Goldey, M. Head-Gordon, Phys. Chem. Chem. Phys. 2013, 15, 358–366.
- 59O. Kahn, Chem. Phys. Lett. 1997, 265, 109–114.
- 60D. Doehnert, J. Koutecky, J. Am. Chem. Soc. 1980, 102, 1789–1796.
- 61M. Head-Gordon, Chem. Phys. Lett. 2003, 372, 508–511.
- 62D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758–3772.
- 63Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. von R. Schleyer, Chem. Rev. 2005, 105, 3842–3888.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.