A Congruent-Melting Mid-Infrared Nonlinear Optical Vanadate Exhibiting Strong Second-Harmonic Generation
Dr. Chao Wu
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xingxing Jiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Search for more papers by this authorLin Lin
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorYilei Hu
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorTianhui Wu
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorProf. Zheshuai Lin
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Zhipeng Huang
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorProf. Mark G. Humphrey
Research School of Chemistry, Australian National University, Canberra, ACT, 2601 Australia
Search for more papers by this authorCorresponding Author
Prof. Chi Zhang
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorDr. Chao Wu
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xingxing Jiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Search for more papers by this authorLin Lin
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorYilei Hu
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorTianhui Wu
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorProf. Zheshuai Lin
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Zhipeng Huang
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorProf. Mark G. Humphrey
Research School of Chemistry, Australian National University, Canberra, ACT, 2601 Australia
Search for more papers by this authorCorresponding Author
Prof. Chi Zhang
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorAbstract
Study of mid-infrared (mid-IR) nonlinear optical (NLO) materials is hindered by the competing requirements of optimized second-harmonic generation (SHG) coefficient dij and laser-induced damage threshold (LIDT) as well as the harsh synthetic conditions. Herein, we report facile hydrothermal synthesis of a polar NLO vanadate Cs4V8O22 (CVO) featuring a quasi-rigid honeycomb-layered structure with [VO4] and [VO5] polyhedra aligned parallel. CVO possesses a wide IR-transparent window, high LIDT, and congruent-melting behavior. It has very strong phase-matchable SHG intensities in metal vanadate family (12.0 × KDP @ 1064 nm and 2.2 × AGS @ 2100 nm). First-principles calculations suggest that the exceptional SHG responses of CVO largely originate from virtual electronic transitions within [V4O11]∞ layer; the excellent optical transmittance of CVO arises from the special characteristics of vibrational phonons resulting from the layered structure.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202108886-sup-0001-misc_information.pdf850.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Cyranoski, Nature 2009, 457, 953–955;
- 1bP. S. Halasyamani, K. R. Poeppelmeier, Chem. Mater. 1998, 10, 2753–2769;
- 1cN. Savage, Nat. Photonics 2007, 1, 83–85;
- 1dC. T. Chen, Y. B. Wang, B. C. Wu, K. C. Wu, W. L. Zeng, L. H. Yu, Nature 1995, 373, 322–324.
- 2
- 2aH. W. Yu, M. L. Nisbet, K. R. Poeppelmeier, J. Am. Chem. Soc. 2018, 140, 8868–8876;
- 2bH. W. Yu, W. G. Zhang, J. Young, J. M. Rondinelli, P. S. Halasyamani, Adv. Mater. 2015, 27, 7380–7385;
- 2cH. M. Zhou, L. Xiong, L. Chen, L. M. Wu, Angew. Chem. Int. Ed. 2019, 58, 9979–9983; Angew. Chem. 2019, 131, 10084–10088;
- 2dF. F. Mao, C. L. Hu, X. Xu, D. Yan, B. P. Yang, J. G. Mao, Angew. Chem. Int. Ed. 2017, 56, 2151–2155; Angew. Chem. 2017, 129, 2183–2187;
- 2eC. Wu, T. H. Wu, X. X. Jiang, Z. J. Wang, H. Y. Sha, L. Lin, Z. S. Lin, Z. P. Huang, X. F. Long, M. G. Humphrey, C. Zhang, J. Am. Chem. Soc. 2021, 143, 4138–4142.
- 3
- 3aC. T. Chen, B. C. Wu, A. D. Jiang, G. M. You, Sci. Sin. Ser. B 1985, 28, 235–243;
- 3bC. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, S. J. Lin, J. Opt. Soc. Am. B 1989, 6, 616–621;
- 3cY. C. Wu, T. Sasaki, N. Nakai, A. Yokotani, H. G. Tang, C. T. Chen, Appl. Phys. Lett. 1993, 62, 2614–2615;
- 3dJ. J. De Yoreo, A. K. Burnham, P. K. Whitman, Int. Mater. Rev. 2002, 47, 113–152.
- 4F. Liang, L. Kang, Z. S. Lin, Y. C. Wu, Cryst. Growth Des. 2017, 17, 2254–2289.
- 5
- 5aB. Tell, H. M. Kasper, Phys. Rev. B 1971, 4, 4455–4459;
- 5bU. Simon, Z. Benko, M. W. Sigrist, R. F. Curl, F. K. Tittel, Appl. Opt. 1993, 32, 6650–6655;
- 5cG. D. Boyd, E. Buehler, F. G. Storz, Appl. Phys. Lett. 1971, 18, 301–304.
- 6
- 6aT. K. Bera, J. I. Jang, J. H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, M. G. Kanatzidis, J. Am. Chem. Soc. 2010, 132, 3484–3495;
- 6bB. W. Liu, X. M. Jiang, H. Y. Zeng, G. C. Guo, J. Am. Chem. Soc. 2020, 142, 10641–10645;
- 6cH. Lin, L. Chen, L. J. Zhou, L. M. Wu, J. Am. Chem. Soc. 2013, 135, 12914–12921;
- 6dC. Yang, X. Liu, C. Teng, X. Cheng, F. Liang, Q. Wu, Mater. Today Phys. 2021, 19, 100432;
- 6eX. L. Chen, Q. Jing, K. M. Ok, Angew. Chem. Int. Ed. 2020, 59, 20323–20327; Angew. Chem. 2020, 132, 20503–20507;
- 6fJ. D. Chen, C. S. Lin, D. Zhao, M. Luo, G. Peng, B. X. Li, S. D. Yang, Y. S. Sun, N. Ye, Angew. Chem. Int. Ed. 2020, 59, 23549–23553; Angew. Chem. 2020, 132, 23755–23759.
- 7
- 7aI. Chung, M. G. Kanatzidis, Chem. Mater. 2014, 26, 849–869;
- 7bA. Schliesser, N. Picque, T. W. Haensch, Nat. Photonics 2012, 6, 440–449.
- 8
- 8aK. Wu, Z. H. Yang, S. L. Pan, Angew. Chem. Int. Ed. 2016, 55, 6713–6715; Angew. Chem. 2016, 128, 6825–6827;
- 8bS. P. Guo, Y. Chi, G. C. Guo, Coord. Chem. Rev. 2017, 335, 44–57.
- 9
- 9aK. M. Ok, Acc. Chem. Res. 2016, 49, 2774–2785;
- 9bD. Vitzthum, K. Wurst, J. M. Pann, P. Bruggeller, M. Seibald, H. Huppertz, Angew. Chem. Int. Ed. 2018, 57, 11451–11455; Angew. Chem. 2018, 130, 11622–11626;
- 9cJ. Chen, C. L. Hu, F. F. Mao, B. P. Yang, X. H. Zhang, J. G. Mao, Angew. Chem. Int. Ed. 2019, 58, 11666–11669; Angew. Chem. 2019, 131, 11792–11795;
- 9dH. W. Yu, J. Young, H. P. Wu, W. G. Zhang, J. M. Rondinelli, P. S. Halasyamani, J. Am. Chem. Soc. 2016, 138, 4984–4989;
- 9eR. L. Tang, C. L. Hu, B. L. Wu, Z. Fang, Y. Chen, J. G. Mao, Angew. Chem. Int. Ed. 2019, 58, 15358–15361; Angew. Chem. 2019, 131, 15502–15505;
- 9fG. Peng, N. Ye, Z. S. Lin, L. Kang, S. L. Pan, M. Zhang, C. S. Lin, X. F. Long, M. Luo, Y. Chen, Y. H. Tang, F. Xu, T. Yan, Angew. Chem. Int. Ed. 2018, 57, 8968–8972; Angew. Chem. 2018, 130, 9106–9110.
- 10
- 10aX. S. Lin, G. Zhang, N. Ye, Cryst. Growth Des. 2009, 9, 1186–1189;
- 10bX. L. Chen, H. Jo, K. M. Ok, Angew. Chem. Int. Ed. 2020, 59, 7514–7520; Angew. Chem. 2020, 132, 7584–7590;
- 10cS. P. Guo, Y. Chi, H. G. Xue, Angew. Chem. Int. Ed. 2018, 57, 11540–11543; Angew. Chem. 2018, 130, 11714–11717;
- 10dC. Li, W. L. Yin, P. F. Gong, X. S. Li, M. L. Zhou, A. Mar, Z. S. Lin, J. Y. Yao, Y. C. Wu, C. T. Chen, J. Am. Chem. Soc. 2016, 138, 6135–6138;
- 10eH. Lin, W. B. Wei, H. Chen, X. T. Wu, Q. L. Zhu, Coord. Chem. Rev. 2020, 406, 213150.
- 11
- 11aM. Mutailipu, K. R. Poeppelmeier, S. L. Pan, Chem. Rev. 2021, 121, 1130–1202;
- 11bS. G. Zhao, L. Kang, Y. G. Shen, X. D. Wang, M. A. Asghar, Z. S. Lin, Y. Y. Xu, S. Y. Zeng, M. C. Hong, J. H. Luo, J. Am. Chem. Soc. 2016, 138, 2961–2964.
- 12
- 12aX. M. Liu, P. F. Gong, Y. Yang, G. M. Song, Z. S. Lin, Coord. Chem. Rev. 2019, 400, 213045;
- 12bY. X. Song, M. Luo, C. S. Lin, N. Ye, Chem. Mater. 2017, 29, 896–903.
- 13
- 13aT. T. Tran, J. Young, J. M. Rondinelli, P. S. Halasyamani, J. Am. Chem. Soc. 2017, 139, 1285–1295;
- 13bG. H. Zou, N. Ye, L. Huang, X. Lin, J. Am. Chem. Soc. 2011, 133, 20001–20007.
- 14
- 14aP. Yu, L. M. Wu, L. J. Zhou, L. Chen, J. Am. Chem. Soc. 2014, 136, 480–487;
- 14bC. Wu, X. X. Jiang, Z. J. Wang, H. Y. Sha, Z. S. Lin, Z. P. Huang, X. F. Long, M. G. Humphrey, C. Zhang, Angew. Chem. Int. Ed. 2021, 60, 14806–14810; Angew. Chem. 2021, 133, 14932–14936.
- 15P. Becker, Adv. Mater. 1998, 10, 979–992.
- 16H. Zhang, M. Zhang, S. L. Pan, X. Y. Dong, Z. H. Yang, X. L. Hou, Z. Wang, K. B. Chang, K. R. Poeppelmeier, J. Am. Chem. Soc. 2015, 137, 8360–8363.
- 17
- 17aE. O. Chi, K. M. Ok, Y. Porter, P. S. Halasyamani, Chem. Mater. 2006, 18, 2070–2074;
- 17bL. Lin, X. X. Jiang, C. Wu, L. H. Li, Z. S. Lin, Z. P. Huang, M. G. Humphrey, C. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 49812–49821.
- 18
- 18aY. L. Deng, L. Huang, X. H. Dong, L. Wang, K. M. Ok, H. M. Zeng, Z. E. Lin, G. H. Zou, Angew. Chem. Int. Ed. 2020, 59, 21151–21156; Angew. Chem. 2020, 132, 21337–21342;
- 18bF. G. You, F. Liang, Q. Huang, Z. G. Hu, Y. C. Wu, Z. S. Lin, J. Am. Chem. Soc. 2019, 141, 748–752.
- 19
- 19aJ. Xu, H. P. Wu, H. W. Yu, W. G. Zhang, Z. G. Hu, J. Wang, Y. C. Wu, P. S. Halasyamani, Chem. Mater. 2020, 32, 906–912;
- 19bM. J. Xia, C. Tang, R. K. Li, Angew. Chem. Int. Ed. 2019, 58, 18257–18260; Angew. Chem. 2019, 131, 18425–18428;
- 19cW. Q. Lu, Z. L. Gao, X. T. Liu, X. X. Tian, Q. Wu, C. G. Li, Y. X. Sun, Y. Liu, X. T. Tao, J. Am. Chem. Soc. 2018, 140, 13089–13096;
- 19dH. C. Lan, F. Liang, X. X. Jiang, C. Zhang, H. H. Yu, Z. S. Lin, H. J. Zhang, J. Y. Wang, Y. C. Wu, J. Am. Chem. Soc. 2018, 140, 4684–4690;
- 19eG. P. Han, Y. Wang, X. Su, Z. H. Yang, S. L. Pan, Sci. Rep. 2017, 7, 1901;
- 19fJ. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, X. T. Tao, Chem. Mater. 2011, 23, 3752–3761.
- 20C. T. Chen, Sci. Sin. 1979, 22, 756–776.
- 21
- 21aC. Wu, G. Yang, M. G. Humphrey, C. Zhang, Coord. Chem. Rev. 2018, 375, 459–488;
- 21bC. Wu, X. X. Jiang, Z. J. Wang, L. Lin, Z. S. Lin, Z. P. Huang, X. F. Long, M. G. Humphrey, C. Zhang, Angew. Chem. Int. Ed. 2021, 60, 3464–3468; Angew. Chem. 2021, 133, 3506–3510.
- 22H. S. Ra, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2003, 125, 7764–7765.
- 23C. Wu, L. Lin, X. X. Jiang, Z. S. Lin, Z. P. Huang, M. G. Humphrey, P. S. Halasyamani, C. Zhang, Chem. Mater. 2019, 31, 10100–10108.
- 24X. F. Wang, Y. Wang, B. B. Zhang, F. F. Zhang, Z. H. Yang, S. L. Pan, Angew. Chem. Int. Ed. 2017, 56, 14119–14123; Angew. Chem. 2017, 129, 14307–14311.
- 25
- 25aH. T. Evans, S. Block, Inorg. Chem. 1966, 5, 1808–1814;
- 25bF. C. Hawthorne, C. Calvo, J. Solid State Chem. 1977, 22, 157–170.
- 26Z. Li, X. X. Jiang, C. J. Yi, M. L. Zhou, Y. W. Guo, X. Y. Luo, Z. S. Lin, Y. C. Wu, Y. G. Shi, J. Y. Yao, J. Mater. Chem. C 2018, 6, 10042–10049.
- 27
- 27aZ. H. Chen, Z. Z. Zhang, X. Y. Dong, Y. J. Shi, Y. Q. Liu, Q. Jing, Cryst. Growth Des. 2017, 17, 2792–2800;
- 27bJ. Yeon, S. H. Kim, P. S. Halasyamani, Inorg. Chem. 2010, 49, 6986–6993;
- 27cW. Q. Chen, W. Y. Zhang, M. H. Lee, Q. Jing, X. F. Lu, Z. H. Chen, Opt. Mater. 2019, 88, 642–647;
- 27dM. Bosacka, Mater. Res. Bull. 2009, 44, 2252–2254;
- 27eZ. B. Lin, G. F. Wang, L. Z. Zhang, J. Cryst. Growth 2007, 304, 233–235;
- 27fA. K. Paidi, P. W. Jaschin, K. B. R. Varma, K. Vidyasagar, Inorg. Chem. 2017, 56, 12631–12640;
- 27gX. Su, Z. H. Yang, G. P. Han, Y. Wang, M. Wen, S. L. Pan, Dalton Trans. 2016, 45, 14394–14402.
- 28P. A. Maggard, T. S. Nault, C. L. Stern, K. R. Poeppelmeier, J. Solid State Chem. 2003, 175, 27–33.
- 29D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, Springer, Heidelberg, 2012.
- 30
- 30aS. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567–570;
- 30bW. Kohn, L. J. Sham, Phys. Rev. 1965, 140, 1133–1138.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.