High-Performance Ultraviolet Organic Light-Emitting Diode Enabled by High-Lying Reverse Intersystem Crossing
Han Zhang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
These authors contributed equally to this work.
Search for more papers by this authorGanggang Li
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
These authors contributed equally to this work.
Search for more papers by this authorXiaomin Guo
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
These authors contributed equally to this work.
Search for more papers by this authorKai Zhang
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014 China
Search for more papers by this authorBing Zhang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorXuecheng Guo
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorYuxuan Li
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorJianzhong Fan
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014 China
Search for more papers by this authorCorresponding Author
Prof. Zhiming Wang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorProf. Dongge Ma
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Prof. Ben Zhong Tang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorHan Zhang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
These authors contributed equally to this work.
Search for more papers by this authorGanggang Li
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
These authors contributed equally to this work.
Search for more papers by this authorXiaomin Guo
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
These authors contributed equally to this work.
Search for more papers by this authorKai Zhang
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014 China
Search for more papers by this authorBing Zhang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorXuecheng Guo
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorYuxuan Li
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorJianzhong Fan
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014 China
Search for more papers by this authorCorresponding Author
Prof. Zhiming Wang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorProf. Dongge Ma
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Prof. Ben Zhong Tang
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, Guangzhou International Campus, South China University of Technology, Guangzhou, 510640 China
Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 China
Search for more papers by this authorAbstract
Ultraviolet (UV) organic emitters that can open up applications for future organic light-emitting diodes (OLEDs) are of great value but rarely developed. Here, we report a high-quality UV emitter with hybridized local and charge-transfer (HLCT) excited state and its application in UV OLEDs. The UV emitter, 2BuCz-CNCz, shows the features of low-lying locally excited (LE) emissive state and high-lying reverse intersystem crossing (hRISC) process, which helps to balance the color purity and exciton utilization of UV OLED. Consequently, the OLED based on 2BuCz-CNCz exhibits not only a desired narrowband UV electroluminescent (EL) at 396 nm with satisfactory color purity (CIEx, y=0.161, 0.031), but also a record-high maximum external quantum efficiency (EQE) of 10.79 % with small efficiency roll-off. The state-of-the-art device performance can inspire the design of UV emitters, and pave a way for the further development of high-performance UV OLEDs.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202108540-sup-0001-misc_information.pdf869.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913;
- 1bY. Ma, H. Zhang, J. Shen, C. Che, Synth. Met. 1998, 94, 245;
- 1cM. A. Baldo, D. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, S. R. Forrest, Nature 1998, 395, 151;
- 1dH. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234;
- 1eX. Ai, E. W. Evans, S. Dong, A. J. Gillett, H. Guo, Y. Chen, T. J. H. Hele, R. H. Friend, F. Li, Nature 2018, 563, 536;
- 1fY. Xu, P. Xu, D. Hu, Y. Ma, Chem. Soc. Rev. 2021, 50, 1030.
- 2
- 2aA. Zampetti, A. Minotto, F. Cacialli, Adv. Funct. Mater. 2019, 29, 1807623;
- 2bM. Chen, Y. Liao, Y. Lin, T. Xu, W. Lan, B. Wei, Y. Yuan, D. Li, X. Zhang, J. Mater. Chem. C 2020, 8, 14665;
- 2cS. Chen, H. Xu, Chem. Soc. Rev. 2021, 50, 8639.
- 3
- 3aT.-C. Chao, Y.-T. Lin, C.-Y. Yang, T. S. Hung, H.-C. Chou, C.-C. Wu, K.-T. Wong, Adv. Mater. 2005, 17, 992;
- 3bJ. Lin, X. Guo, Y. Lv, X. Liu, Y. Wang, ACS Appl. Mater. Interfaces 2020, 12, 10717.
- 4H. van Santen, J. H. M. Neijzen, Jpn. J. Appl. Phys. 2003, 42, 1110.
- 5J. Shinar, R. Shinar, J. Phys. D 2008, 41, 133001.
- 6
- 6aX. Zhang, F. You, S. Liu, B. Mo, Z. Zhang, J. Xiong, P. Cai, X. Xue, J. Zhang, B. Wei, Appl. Phys. Lett. 2017, 110, 043301;
- 6bY. Luo, S. Li, Y. Zhao, C. Li, Z. Pang, Y. Huang, M. Yang, L. Zhou, X. Zheng, X. Pu, Z. Lu, Adv. Mater. 2020, 32, 2001248.
- 7
- 7aK.-T. Wong, Y.-L. Liao, Y.-T. Lin, H.-C. Su, C.-C. Wu, Org. Lett. 2005, 7, 5131;
- 7bV. Joseph, K. R. J. Thomas, M. Singh, S. Sahoo, J.-H. Jou, Eur. J. Org. Chem. 2017, 6660;
- 7cH. L. Lee, W. J. Chung, J. Y. Lee, Small 2020, 16, 1907569.
- 8
- 8aH. Liu, Q. Bai, L. Yao, H. Zhang, H. Xu, S. Zhang, W. Li, Y. Gao, J. Li, P. Lu, H. Wang, B. Yang, Y. Ma, Chem. Sci. 2015, 6, 3797;
- 8bH. Yang, Q. Liang, C. Han, J. Zhang, H. Xu, Adv. Mater. 2017, 29, 1700553;
- 8cS.-N. Zou, X. Chen, S.-Y. Yang, S. Kumar, Y.-K. Qu, Y.-J. Yu, M.-K. Fung, Z.-Q. Jiang, L.-S. Liao, Adv. Opt. Mater. 2020, 8, 2001074.
- 9
- 9aY. Yuan, J.-X. Chen, F. Lu, Q.-X. Tong, Q.-D. Yang, H.-W. Mo, T.-W. Ng, F.-L. Wong, Z.-Q. Guo, J. Ye, Z. Chen, X.-H. Zhang, C.-S. Lee, Chem. Mater. 2013, 25, 4957;
- 9bM. Liu, X.-L. Li, D. C. Chen, Z. Xie, X. Cai, G. Xie, K. Liu, J. Tang, S.-J. Su, Y. Cao, Adv. Funct. Mater. 2015, 25, 5190.
- 10
- 10aZ. Shuai, D. Beljonne, R. J. Silbey, J. L. Brédas, Phys. Rev. Lett. 2000, 84, 131;
- 10bP. K. Samanta, D. Kim, V. Coropceanu, J.-L. Brédas, J. Am. Chem. Soc. 2017, 139, 4042;
- 10cH. Noda, X.-K. Chen, H. Nakanotani, T. Hosokai, M. Miyajima, N. Notsuka, Y. Kashima, J.-L. Brédas, C. Adachi, Nat. Mater. 2019, 18, 1084.
- 11
- 11aM. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444;
- 11bY. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee, Chem. Mater. 2017, 29, 1946;
- 11cY. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020.
- 12
- 12aL. Yao, S. Zhang, R. Wang, W. Li, F. Shen, B. Yang, Y. Ma, Angew. Chem. Int. Ed. 2014, 53, 2119; Angew. Chem. 2014, 126, 2151;
- 12bW. Li, Y. Pan, R. Xiao, Q. Peng, S. Zhang, D. Ma, F. Li, F. Shen, Y. Wang, B. Yang, Y. Ma, Adv. Funct. Mater. 2014, 24, 1609;
- 12cB. Li, G. Tang, L. Zhou, D. Wu, J. Lan, L. Zhou, Z. Lu, J. You, Adv. Funct. Mater. 2017, 27, 1605245;
- 12dJ. Yang, Q. Guo, J. Wang, Z. Ren, J. Chen, Q. Peng, D. Ma, Z. Li, Adv. Opt. Mater. 2018, 6, 1800342;
- 12eC. Fu, S. Luo, Z. Li, X. Ai, Z. Pang, C. Li, K. Chen, L. Zhou, F. Li, Y. Huang, Z. Lu, Chem. Commun. 2019, 55, 6317;
- 12fX. Chen, D. Ma, T. Liu, Z. Chen, Z. Yang, J. Zhao, Z. Yang, Y. Zhang, Z. Chi, CCS Chem. 2021, 3, 1285;
- 12gH. Zhang, J. Xue, C. Li, S. Zhang, B. Yang, Y. Liu, Y. Wang, Adv. Funct. Mater. 2021, 31, 2100704;
- 12hY. Zheng, Z. Wang, X. Wang, J. Li, X. J. Feng, G. He, Z. Zhao, H. Lu, ACS Appl. Electron. Mater. 2021, 3, 422.
- 13
- 13aZ. Wang, Y. Feng, S. Zhang, Y. Gao, Z. Gao, Y. Chen, X. Zhang, P. Lu, B. Yang, P. Chen, Y. Ma, S. Liu, Phys. Chem. Chem. Phys. 2014, 16, 20772;
- 13bS. Zhang, L. Yao, Q. Peng, W. Li, Y. Pan, R. Xiao, Y. Gao, C. Gu, Z. Wang, P. Lu, F. Li, S.-J. Su, B. Yang, Y. Ma, Adv. Funct. Mater. 2015, 25, 1755;
- 13cH. Zhang, J. Zeng, W. Luo, H. Wu, C. Zeng, K. Zhang, W. Feng, Z. Wang, Z. Zhao, B. Z. Tang, J. Mater. Chem. C 2019, 7, 6359;
- 13dH. Zhang, A. Li, G. Li, B. Li, Z. Wang, S. Xu, W. Xu, B. Z. Tang, Adv. Opt. Mater. 2020, 8, 1902195;
- 13eH. Zhang, B. Zhang, Y. Zhang, Z. Xu, H. Wu, P. A. Yin, Z. Wang, Z. Zhao, D. Ma, B. Z. Tang, Adv. Funct. Mater. 2020, 30, 2002323.
- 14W. Yuan, H. Yang, C. Duan, X. Cao, J. Zhang, H. Xu, N. Sun, Y. Tao, W. Huang, Chem 2020, 6, 1.
- 15
- 15aY. Pan, W. Li, S. Zhang, L. Yao, C. Gu, H. Xu, B. Yang, Y. Ma, Adv. Opt. Mater. 2014, 2, 510;
- 15bY. Xu, X. Liang, X. Zhou, P. Yuan, J. Zhou, C. Wang, B. Li, D. Hu, X. Qiao, X. Jiang, L. Liu, S.-J. Su, D. Ma, Y. Ma, Adv. Mater. 2019, 31, 1807388;
- 15cY. Xu, C. Wang, X. Zhou, J. Zhou, X. Guo, X. Liang, D. Hu, F. Li, D. Ma, Y. Ma, J. Phys. Chem. Lett. 2019, 10, 6878.
- 16
- 16aD. Beljonne, Z. Shuai, G. Pourtois, J. L. Brédas, J. Phys. Chem. A 2001, 105, 3899;
- 16bM. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun. 2016, 7, 13680.
- 17
- 17aQ. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134, 14706;
- 17bL. Gan, K. Gao, X. Cai, D. Chen, S.-J. Su, J. Phys. Chem. Lett. 2018, 9, 4725.
- 18
- 18aW. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang, Y. Ma, Adv. Funct. Mater. 2012, 22, 2797;
- 18bR. Ieuji, K. Goushi, C. Adachi, Nat. Commun. 2019, 10, 5283.
- 19Y. He, Z. Qiao, X. Cai, M. Li, W. Li, W. Xie, W. Qiu, L. Wang, S.-J. Su, ACS Appl. Mater. Interfaces 2020, 12, 49905.
- 20
- 20aX. Tang, Q. Bai, T. Shan, J. Li, Y. Gao, F. Liu, H. Liu, Q. Peng, B. Yang, F. Li, P. Lu, Adv. Funct. Mater. 2018, 28, 1705813;
- 20bX. Lv, M. Sun, L. Xu, R. Wang, H. Zhou, Y. Pan, S. Zhang, Q. Sun, S. Xue, W. Yang, Chem. Sci. 2020, 11, 5058.
- 21
- 21aB. Hu, L. Yan, M. Shao, Adv. Mater. 2009, 21, 1500;
- 21bP. Chen, Z. Xiong, Q. Peng, J. Bai, S. Zhang, F. Li, Adv. Opt. Mater. 2014, 2, 142.
- 22X. Guo, P. Yuan, J. Fan, X. Qiao, D. Yang, Y. Dai, Q. Sun, A. Qin, B. Z. Tang, D. Ma, Adv. Mater. 2021, 33, 2006953.
- 23M. A. Baldo, D. F. O'Brien, M. E. Thompson, S. R. Forrest, Phys. Rev. B 1999, 60, 14422.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.