Catalytic Asymmetric Darzens-Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides
Dong Guk Nam
Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419 Korea
These authors contributed equally to this work.
Search for more papers by this authorDr. Su Yong Shim
Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419 Korea
Present address: Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
These authors contributed equally to this work.
Search for more papers by this authorHye-Min Jeong
Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419 Korea
Search for more papers by this authorCorresponding Author
Dr. Do Hyun Ryu
Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419 Korea
Search for more papers by this authorDong Guk Nam
Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419 Korea
These authors contributed equally to this work.
Search for more papers by this authorDr. Su Yong Shim
Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419 Korea
Present address: Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
These authors contributed equally to this work.
Search for more papers by this authorHye-Min Jeong
Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419 Korea
Search for more papers by this authorCorresponding Author
Dr. Do Hyun Ryu
Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419 Korea
Search for more papers by this authorAbstract
Highly enantioselective Darzens-type epoxidation of diazoesters with glyoxal derivatives was accomplished using a chiral boron–Lewis acid catalyst, which facilitated asymmetric synthesis of trisubstituted α,β-epoxy esters. In the presence of a chiral oxazaborolidinium ion catalyst, the reaction proceeded in high yield (up to 99 %) with excellent enantio- and diastereoselectivity (up to >99 % ee and >20:1 dr, respectively). The synthetic potential of this method was illustrated by conversion of the products to various compounds such as epoxy γ-butyrolactone, tertiary β-hydroxy ketone and epoxy diester.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202108454-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Reviews on the syntheses, properties and reactivities of epoxide derivatives;
- 1aJ. Aube in Comprehensive Organic Synthesis, Vol. 1 (Eds.: B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991, pp. 819–842;
- 1b“Asymmetric Epoxidation”: H. Pellissier, A. Lattanzi, R. Dalpozzo, Asymmetric Synthesis of Three-Membered Rings, Wiley-VCH, 2017, pp. 379–514;
10.1002/9783527802029.ch3 Google Scholar
- 1cC. Wang, L. Luo, H. Yamamoto, Acc. Chem. Res. 2016, 49, 193–204;
- 1dB. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457–2473.
- 2For a review, see;
- 2aC. Lauret, Tetrahedron: Asymmetry 2001, 12, 2359–2383;
- 2bM. J. Porter, J. Skidmore, Chem. Commun. 2000, 1215–1225;
- 2cD. Díez, M. G. Núñez, A. B. Antón, P. García, R. F. Moro, N. M. Garrido, I. S. Marcos, P. Basabe, J. G. Urones, Curr. Org. Synth. 2005, 5, 186–216.
- 3
- 3aJ.-L. Giner, W. V. Ferris, J. J. Mullins, J. Org. Chem. 2002, 67, 4856–4859;
- 3bG. Righi, G. Rumboldt, J. Org. Chem. 1996, 61, 3557–3560.
- 4
- 4aT. Ooi, D. Ohara, M. Tamura, K. Maruoka, J. Am. Chem. Soc. 2004, 126, 6844–6845;
- 4bH. Kakei, R. Tsuji, T. Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2005, 127, 8962–8963;
- 4cC. M. Reisinger, X. Wang, B. List, Angew. Chem. Int. Ed. 2008, 47, 8112–8115; Angew. Chem. 2008, 120, 8232–8235;
- 4dA. Lee, C. M. Reisinger, B. List, Adv. Synth. Catal. 2012, 354, 1701–1706.
- 5
- 5aO. Lifchits, C. M. Reisinger, B. List, J. Am. Chem. Soc. 2010, 132, 10227–10229;
- 5bY. Nishikawa, H. Yamamoto, J. Am. Chem. Soc. 2011, 133, 8432–8435;
- 5cH. Kawai, S. Okusu, Z. Yuan, E. Tokunaga, A. Yamano, M. Shiro, N. Chibata, Angew. Chem. Int. Ed. 2013, 52, 2221–2225; Angew. Chem. 2013, 125, 2277–2281;
- 5dH. Zhang, Q. Yao, L. Lin, C. Xu, X. Liu, X. Feng, Adv. Synth. Catal. 2017, 359, 3454–3459;
- 5eC. De Fusco, C. Tedesco, A. Lattanzi, J. Org. Chem. 2011, 76, 676–679;
- 5fL. Luo, H. Yamamoto, Eur. J. Org. Chem. 2014, 7803–7805.
- 6
- 6a“The Darzens Glycidic Ester Condensation”: M. S. Newman, B. J. Magerlein, Organic Reactions, Wiley, New York, 2011, pp. 413–440;
10.1002/0471264180.or005.10 Google Scholar
- 6b“Darzens condensation”: Z. Wang in Comprehensive Organic Name Reactions and Reagents, Wiley, Hoboken, 2009, pp. 841–845;
- 6cJ. M. de los Santos, A. M. Ochoa de Retana, E. Martínez de Marigorta, J. Vicario, F. Palacios, ChemCatChem 2018, 10, 5092–5114;
- 6d“Asymmetric Synthesis of Epoxides and Aziridines from Aldehydes and Imines”: V. K. Aggarwal, D. M. Badine, V. A. Moorthie in Aziridines and Epoxides in Organic Synthesis (Eds.: A. K. Yudin), Wiley-VCH, Weinheim, 2006, pp. 1–35.
10.1002/3527607862.ch1 Google Scholar
- 7
- 7aV. K. Aggarwal, G. Hynd, W. Picoul, J.-L. Vasse, J. Am. Chem. Soc. 2002, 124, 9964–9965;
- 7bY. Liu, B. A. Provencher, K. J. Bartelson, L. Deng, Chem. Sci. 2011, 2, 1301–1304;
- 7cV. Ashokkumar, A. Siva, R. R. Chidambaram, Chem. Commun. 2017, 53, 10926–10929;
- 7dS. Arai, Y. Shirai, T. Ishida, T. Shioiri, Tetrahedron 1999, 55, 6375–6386;
- 7eD. P. Hahajan, H. M. Godbole, G. P. Shngh, G. G. Shenoy, J. Chem. Sci. 2019, 131, 22.
- 8
- 8a“Synthesis and Use of Chiral Sulfur Ylides”: J.-F. Briere, P. Metzner, T. Toru, C. Bolm, Organosulfur Chemistry in Asymmetric, Wiley-VCH, Weinheim, 2008, pp. 179–208;
10.1002/9783527623235.ch5 Google Scholar
- 8bM. M. Heravi, S. Asadi, N. Nazari, M. Lashkariani, Curr. Org. Synth. 2016, 13, 308–333;
- 8cE. M. McGarrigle, E. L. Myers, O. Illa, M. A. Shaw, S. L. Riches, V. K. Aggarwal, Chem. Rev. 2007, 107, 5841–5883;
- 8dV. K. Aggarwal, C. L. Winn, Acc. Chem. Res. 2004, 37, 611–620;
- 8eA.-H. Li, L.-X. Dai, Chem. Rev. 1997, 97, 2341–2372.
- 9
- 9aV. K. Aggarwal, I. Bae, H.-Y. Lee, J. Richardson, D. T. Willians, Angew. Chem. Int. Ed. 2003, 42, 3274–3278; Angew. Chem. 2003, 115, 3396–3400;
- 9bY. Arroyo, M. A. Sanz-Tejedor, J. L. G. Ruano, Org. Lett. 2008, 10, 2151–2154;
- 9cO. Illa, M. Arshad, A. Ros, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem. Soc. 2010, 132, 1828–1830;
- 9dO. Illa, M. Namutebi, C. Saha, M. Ostovar, C. C. Chen, M. F. Haddow, S. Nocquet-Thibault, M. Lusi, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem. Soc. 2013, 135, 11951–119661;
- 9eT. Sone, A. Yamaguchi, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2008, 130, 10078–10079;
- 9fV. K. Aggarwal, J. Richardson, Chem. Commun. 2003, 2644–2651.
- 10
- 10aA. K. Gupta, X. Yin, M. Mukherjee, A. A. Desai, A. Mohammadlou, K. Jurewicz, W. D. Wulff, Angew. Chem. Int. Ed. 2019, 58, 3361–3367; Angew. Chem. 2019, 131, 3399–3405;
- 10bL. He, W.-J. Liu, L. Ren, T. Lei, L.-Z. Gong, Adv. Synth. Catal. 2010, 352, 1123–1127;
- 10cW.-J. Liu, B.-D. Lv, L.-Z. Gong, Angew. Chem. Int. Ed. 2009, 48, 6503–6506; Angew. Chem. 2009, 121, 6625–6628;
- 10dG.-L. Chal, J.-W. Han, H. N. C. Wong, Synthesis 2016, 48, A–G;
- 10eG. Liu, D. Zhang, J. Li, G. Xu, J. Sun, Org. Biomol. Chem. 2013, 11, 900–904.
- 11
- 11aL. Huang, W. D. Wulff, J. Am. Chem. Soc. 2011, 133, 8892–8895;
- 11bT. Hashimoto, H. Nakatsu, K. Yamamoto, K. Maruoka, J. Am. Chem. Soc. 2011, 133, 9730–9733.
- 12
- 12aS. Y. Shim, D. H. Ryu, Acc. Chem. Res. 2019, 52, 2349–2360;
- 12bL. Gao, B. C. Kang, G.-S. Hwang, D. H. Ryu, Angew. Chem. Int. Ed. 2012, 51, 8322–8325; Angew. Chem. 2012, 124, 8447–8450;
- 12cS. H. Shin, E. H. Baek, G.-S. Hwang, D. H. Ryu, Org. Lett. 2015, 17, 4736–4749;
- 12dB. C. Kang, D. G. Nam, G.-S. Hwang, D. H. Ryu, Org. Lett. 2015, 17, 4810–4813;
- 12eJ. Y. Kim, B. C. Kang, D. H. Ryu, Org. Lett. 2017, 19, 5936–5939;
- 12fL. Gao, B. C. Kang, D. H. Ryu, J. Am. Chem. Soc. 2013, 135, 14556–14559.
- 13Selected recent examples for asymmetric reactions with COBI catalysts;
- 13aJ. Y. Kim, Y. S. Lee, Y. Choi, D. H. Ryu, ACS Catal. 2020, 10, 10585–10591;
- 13bT. Kim, H.-M. Jeong, A. Venkateswarlu, D. H. Ryu, Org. Lett. 2020, 22, 5198–5201;
- 13cK.-T. Kang, S. H. Park, D. H. Ryu, Org. Lett. 2019, 21, 6679–6683;
- 13dR. P. Pandit, S. T. Kim, D. H. Ryu, Angew. Chem. Int. Ed. 2019, 58, 13427–13432; Angew. Chem. 2019, 131, 13561–13566;
- 13eK.-T. Kang, S. T. Kim, G.-S. Hwang, D. H. Ryu, Angew. Chem. Int. Ed. 2017, 56, 3977–3981; Angew. Chem. 2017, 129, 4035–4039;
- 13fS. Y. Shim, Y. Choi, D. H. Ryu, J. Am. Chem. Soc. 2018, 140, 11184–11188;
- 13gS. Y. Shim, S. M. Cho, A. Venkateswarlu, D. H. Ryu, Angew. Chem. Int. Ed. 2017, 56, 8663–8666; Angew. Chem. 2017, 129, 8789–8792;
- 13hS. Y. Shim, J. Y. Kim, M. Nam, G.-S. Hwang, D. H. Ryu, Org. Lett. 2016, 18, 160–163.
- 14
- 14aJ. M. Domagala, R. D. Bach, J. Am. Chem. Soc. 1978, 100, 1605–1606;
- 14bR. D. Bach, J. M. Domagala, J. Org. Chem. 1984, 49, 4181–4188;
- 14cR. D. Bach, R. C. Klix, Tetrahedron Lett. 1985, 26, 985–988.
- 15W. J. Jang, S. M. Song, Y. Park, J. Yun, J. Org. Chem. 2019, 84, 4429–4434.
- 16The alkyl glyoxal gave less than 20 % isolated yield of epoxide 2, producing the rearrangement product β-keto aldehyde 3 as the major product in ≈50 % yield.
- 17As an example of alkyl diazoester, the reaction of benzyl diazo t-butyl ester gave epoxide 2 in 24 % yield with 90 % ee along with the β-keto aldehyde 3 in 60 % yield.
- 18Deposition Number 2071928 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 19For NMR analysis of pretransition-state assembly 4, see the Supporting Information.
- 20For selected reviews on π-π interactions, see;
- 20aL. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808–4842; Angew. Chem. 2011, 123, 4908–4944. For selected paper on π-π interaction
- 20bA. Jain, C. S. Purohit, S. Verma, R. Sankararamakrishnan, J. Phys. Chem. B 2007, 111, 8680–8683.
- 21M. Taniguchi, H. Fujii, K. Oshima, K. Utimoto, Tetrahedron 1995, 51, 679–686.
- 22K. Liu, Y. Li, W. Liu, X. Zheng, Z. Zong, Z. Li, Chem. Asian J. 2013, 8, 359–363.
- 23Diastereomeric side products were not detected.
- 24
- 24aL. Larrosa, M. I. Da Silva, P. M. Gómez, P. Hannen, E. Ko, S. R. Lenger, S. R. Linke, A. J. P. White, D. Wilton, A. G. M. Barrett, J. Am. Chem. Soc. 2006, 128, 14042–14043;
- 24bL. Lv, B. Shen, Z. Li, Angew. Chem. Int. Ed. 2014, 53, 4164–4167; Angew. Chem. 2014, 126, 4248–4251;
- 24cL. Lv, B. B. Snider, Z. Li, J. Org. Chem. 2017, 82, 5487–5497;
- 24dK.-I. Takao, R. Nemoto, K. Mori, A. Namba, K. Yoshida, A. Ogura, Chem. Eur. J. 2017, 23, 3828–3831.
- 25
- 25aI. di Chimica, D. Fabbri, A. Guerriero, F. Pietra, Helv. Chim. Acta 1987, 70, 63–70;
- 25bT. J. Kimbrough, P. A. Roethle, P. Mayer, D. Trauner, Angew. Chem. Int. Ed. 2010, 49, 2619–2621; Angew. Chem. 2010, 122, 2675–2678.
- 26A. Hoshino, H. Mitome, S. Tamai, H. Takiyama, H. Miyaoka, J. Nat. Prod. 2005, 68, 1328–1335.
- 27Z. Yao, D. Ye, H. Liu, K. Chen, H. Jiang, Synth. Commun. 2007, 37, 149–156.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.