Photoresponsive Palladium and Nickel Catalysts for Ethylene Polymerization and Copolymerization
Dan Peng
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
Search for more papers by this authorCorresponding Author
Prof. Changle Chen
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
Search for more papers by this authorDan Peng
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
Search for more papers by this authorCorresponding Author
Prof. Changle Chen
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
Search for more papers by this authorAbstract
In this contribution, we install an azobenzene functionality in olefin polymerization catalysts and use light to modulate their properties via photoinduced trans–cis isomerization of the azobenzene moiety. The initially targeted azobenzene-functionalized α-diimine palladium and nickel catalysts are not photoresponsive. To address this issue, an imine–amine system bearing interrupted conjugation with the metal center, and a sandwich-type α-diimine system bearing an azobenzene unit at a position covalently far from the metal center were prepared and studied. We demonstrate that light can be used to tune their properties in ethylene polymerization and copolymerization with polar comonomers, enabling light-induced control of the polymerization processes, polymer microstructures and polymer properties. More interestingly, the light-mediated property changes were attributed to ligand electronic effects in one system and ligand steric effects in the other.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202107883-sup-0001-misc_information.pdf6.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. J. Teator, D. N. Lastovickova, C. W. Bielawski, Chem. Rev. 2016, 116, 1969–1992.
- 2F. A. Leibfarth, K. M. Mattson, B. P. Fors, H. A. Collins, C. J. Hawker, Angew. Chem. Int. Ed. 2013, 52, 199–210; Angew. Chem. 2013, 125, 210–222.
- 3M. Chen, C. L. Chen, Chin. J. Chem. 2020, 38, 282–286.
- 4A. Piermattei, S. Karthikeyan, R. P. Sijbesma, Nat. Chem. 2009, 1, 133–137.
- 5P. Zhang, M. H. Zhao, W. M. Pang, C. L. Chen, Sci. China Chem. 2019, 62, 475–478.
- 6J. N. Wei, P. L. Diaconescu, Acc. Chem. Res. 2019, 52, 415–424.
- 7A. J. D. Magenau, N. C. Strandwitz, A. Gennaro, K. Matyjaszewski, Science 2011, 332, 81–84.
- 8N. Corrigan, S. Shanmugam, J. Xu, C. Boyer, Chem. Soc. Rev. 2016, 45, 6165–6212.
- 9F. Eisenreich, M. Kathan, A. Dallmann, S. P. Ihrig, T. Schwaar, B. M. Schmidt, S. A. Hecht, Nat. Catal. 2018, 1, 516–522.
- 10H. J. Yoon, J. Kuwabara, J. H. Kim, C. A. Mirkin, Science 2010, 330, 66–69.
- 11J. Park, K. Lang, K. A. Abboud, S. Hong, J. Am. Chem. Soc. 2008, 130, 16484–16485.
- 12M. Chen, B. P. Yang, C. L. Chen, Angew. Chem. Int. Ed. 2015, 54, 15520–15524; Angew. Chem. 2015, 127, 15740–15744.
- 13W. P. Zou, W. M. Pang, C. L. Chen, Inorg. Chem. Front. 2017, 4, 795–800.
- 14W. C. J. Anderson, J. L. Rhinehart, A. G. Tennyson, B. K. Long, J. Am. Chem. Soc. 2016, 138, 774–777.
- 15J. M. Kaiser, W. C. Anderson, Jr., B. K. Long, Polym. Chem. 2018, 9, 1567–1570.
- 16C. L. Chen, ACS Catal. 2018, 8, 5506–5514.
- 17M. H. Zhao, C. L. Chen, ACS Catal. 2017, 7, 7490–7494.
- 18W. C. Anderson, Jr., S. H. Park, L. A. Brown, J. M. Kaiser, B. K. Long, Inorg. Chem. Front. 2017, 4, 1108–1112.
- 19M. Abubekerov, S. M. Shepard, P. L. Diaconescu, Eur. J. Inorg. Chem. 2016, 2634–2640.
- 20B. Y. Lee, G. C. Bazan, J. Vela, Z. J. A. Komon, X. Bu, J. Am. Chem. Soc. 2001, 123, 5352–5353.
- 21C. Tan, Q. Muhammad, W. M. Pang, C. L. Chen, Polym. Chem. 2020, 11, 411–416.
- 22L. Johnson, L. Wang, S. McLain, A. Bennett, K. Dobbs, E. Hauptman, A. Ionkin, S. Ittel, K. Kunitsky, W. Marshall, E. McCord, C. Radzewich, A. Rinehart, K. J. Sweetman, Y. Wang, Z. H. Yin, M. Brookhart, ACS Symposium Series, Vol. 857, American Chemical Society, Washington, 2003, chap. 10, pp. 131–142.
- 23H. C. Chiu, A. J. Pearce, P. L. Dunn, C. J. Cramer, I. A. Tonks, Organometallics 2016, 35, 2076–2085.
- 24Z. Cai, D. Xiao, L. H. Do, J. Am. Chem. Soc. 2015, 137, 5501–15510.
- 25T. V. Tran, L. J. Karas, J. I. Wu, L. H. Do, ACS Catal. 2020, 10, 10760.
- 26S. Dadashi-Silab, S. Doran, Y. Yagci, Chem. Rev. 2016, 116, 10212–10275.
- 27R. Whitfield, K. Parkatzidis, M. Rolland, N. P. Truong, A. Anastasaki, Angew. Chem. Int. Ed. 2019, 58, 13323–13328; Angew. Chem. 2019, 131, 13457–13462.
- 28M. Rolland, R. Whitfield, D. Messmer, K. Parkatzidis, N. P. Truong, A. Anastasaki, ACS Macro Lett. 2019, 8, 1546–1551.
- 29M. Rolland, N. P. Truong, R. Whitfield, A. Anastasaki, ACS Macro Lett. 2020, 9, 459–463.
- 30H. Dau, A. Keyes, H. E. B. Alhan, E. Ordonez, E. Tsogtgerel, A. P. Gies, E. Auyeung, Z. Zhou, A. Maity, A. Das, D. C. Powers, D. B. Beezer, E. Harth, J. Am. Chem. Soc. 2020, 142, 21469–21483.
- 31A. J. Teator, H. Shao, G. Lu, P. Liu, C. W. Bielawski, Organometallics 2017, 36, 490–497.
- 32M. Li, P. Zhang, C. L. Chen, Macromolecules 2019, 52, 5646–5651.
- 33G. H. Wang, D. Peng, Y. Sun, C. L. Chen, CCS Chem. 2020, 2, 2025–2034.
- 34Z. Chen, M. Brookhart, Acc. Chem. Res. 2018, 51, 1831–1839.
- 35A. Keyes, A. H. Basbug, E. Ordonez, U. Ha, D. B. Beezer, H. Dau, Y. S. Liu, E. Tsogtgerel, G. R. Jones, E. Harth, Angew. Chem. Int. Ed. 2019, 58, 12370–12391; Angew. Chem. 2019, 131, 12498–12520.
- 36F. Z. Wang, C. L. Chen, Polym. Chem. 2019, 10, 2354–2369.
- 37D. J. Walsh, M. G. Hyatt, S. A. Miller, D. Guironnet, ACS Catal. 2019, 9, 11153–11188.
- 38Y. X. Zhang, C. Q. Wang, S. Mecking, Z. B. Jian, Angew. Chem. Int. Ed. 2020, 59, 14296–14302; Angew. Chem. 2020, 132, 14402–14408.
- 39H. Hu, D. Chen, H. Gao, L. Zhong, Q. Wu, Polym. Chem. 2016, 7, 529–537.
- 40Z. Cai, Z. Shen, X. Zhou, R. F. Jordan, ACS Catal. 2012, 2, 1187–1195.
- 41M. Chen, W. P. Zou, Z. G. Cai, C. L. Chen, Polym. Chem. 2015, 6, 2669–2676.
- 42B. M. Boardman, G. C. Bazan, Acc. Chem. Res. 2009, 42, 1597–1606.
- 43A. Maity, T. S. Teets, Chem. Rev. 2016, 116, 8873–8911.
- 44A. M. Johnson, N. D. Contrella, J. R. Sampson, M. Zheng, R. F. Jordan, Organometallics 2017, 36, 4990–5002.
- 45Q. Muhammad, C. Tan, C. L. Chen, Sci. Bull. 2020, 65, 300–307.
- 46Y. F. Gong, S. K. Li, Q. Gong, S. J. Zhang, B. Y. Liu, S. Y. Dai, Organometallics 2019, 38, 2919–2926.
- 47K. B. Lian, Y. Zhu, W. M. Li, S. Y. Dai, C. L. Chen, Macromolecules 2017, 50, 6074–6080.
- 48W. P. Zou, C. L. Chen, Organometallics 2016, 35, 1794–1801.
- 49J. R. Severn, J. C. Chadwick, R. Duchateau, N. Friederichs, Chem. Rev. 2005, 105, 4073–4147.
- 50R. J. Witzke, A. Chapovetsky, M. P. Conley, D. M. Kaphan, M. Delferro, ACS Catal. 2020, 10, 11822–11840.
- 51C. Copéret, A. Comas-Vives, M. P. Conley, D. P. Estes, A. Fedorov, V. Mougel, H. Nagae, F. Nunez-Zarur, P. A. Zhizhko, Chem. Rev. 2016, 116, 323–421.
- 52H. Zhang, C. Zou, H. P. Zhao, Z. G. Cai, C. L. Chen, Angew. Chem. Int. Ed. 2021, 60, 17442–17447; Angew. Chem. 2021, 133, 17582–17587.
- 53M. C. Baier, M. A. Zuideveld, S. Mecking, Angew. Chem. Int. Ed. 2014, 53, 9722–9744; Angew. Chem. 2014, 126, 9878–9902.
- 54J. R. Severn, J. C. Chadwick, V. A. Castelli, Macromolecules 2004, 37, 6258–6259.
- 55L. Montero de Espinosaa, M. A. R. Meier, Eur. Polym. J. 2011, 47, 837–852.
- 56Deposition Numbers 2044611 and 2044612 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.