Rational Fabrication of Crystalline Smart Materials for Rapid Detection and Efficient Removal of Ozone
Dong Yan
Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorZhifang Wang
Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Peng Cheng
Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Yao Chen
State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Zhenjie Zhang
Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDong Yan
Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorZhifang Wang
Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Peng Cheng
Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Yao Chen
State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Zhenjie Zhang
Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDedicated to the 100th anniversary of Chemistry at Nankai University
Abstract
Traditional ozone sensing and removal materials still suffer from high energy consumption and low efficiency. Thus, seeking new ozone-responsive materials with high efficiency and broad working conditions is of great significance. Herein, we first developed covalent organic frameworks (COFs) for smart sensing and efficient removal of ozone. Notably, imine-based COFs possess dramatically fast optical responses (<1 s) to ozone as low as 0.1 ppm under broad working conditions (e.g., in the presence or absence of moisture, room temperature). Moreover, we found that imine-based COFs can also be applied as excellent ozone removers that can efficiently reduce the ozone concentration below the recommended safety limit (<0.1 ppm) for humans. The mechanism for the performance of imine-based COFs was unveiled in-depth by various characterization techniques and analyses. This study not only provides a new type of advanced materials for ozone sensing and removal but also broadens the application scope of COFs.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202015629-sup-0001-misc_information.pdf2.3 MB | Supplementary |
ange202015629-sup-0001-Video_S1.mp414.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Shao, Z. Wu, H. Duan, T. Shaymurat, Sens. Actuators B 2018, 258, 937–946.
- 2E. Tagaris, K.-J. Liao, A. J. DeLucia, L. Deck, P. Amar, A. G. Russell, Environ. Sci. Technol. 2009, 43, 4979–4988.
- 3C. Li, L. S. Balluz, A. Vaidyanathan, X. J. Wen, Y. Hao, J. R. Qualters, Medicine 2016, 95, e2474.
- 4S. Thirumalairajan, V. R. Mastelaro, ACS Appl. Mater. Interfaces 2014, 6, 217739.
- 5D. Ebeling, V. Patel, M. Findlay, J. Stetter, Sens. Actuators B 2009, 137, 129.
- 6K. L. Wilson, J. W. Birks, Environ. Sci. Technol. 2006, 40, 6361.
- 7J. Gordon, K. Rakness, D. Vornehm, D. Wood, J. Am. Water Works Assoc. 1989, 81, 72.
- 8A. Zahn, J. Weppner, H. Widmann, K. Schlote-Holubek, B. Burger, T. Kühner, H. Franke, Atmos. Meas. Tech. 2012, 5, 363.
- 9D. Zhang, Z. Yang, P. Li, X. Zhou, Sens. Actuators B 2019, 301, 127081.
- 10Q. Sun, Z. Wu, Y. Cao, J. Guo, M. Long, H. Duan, D. Jia, Sens. Actuators B 2019, 297, 126689.
- 11H. Wang, P. Rassu, X. Wang, H. Li, X. Wang, X. Wang, X. Feng, A. Yin, P. Li, X. Jin, S. L. Chen, X. Ma, B. Wang, Angew. Chem. Int. Ed. 2018, 57, 16416–16420; Angew. Chem. 2018, 130, 16654–16658.
- 12S. T. Oyama, Catal. Rev. 2000, 42, 279–322.
- 13B. Dhandapani, S. T. Oyama, Appl. Catal. B 1997, 11, 129–166.
- 14S. Yang, J. Nie, F. Wei, X. Yang, Environ. Sci. Technol. 2016, 50, 9592–9598.
- 15L. Hu, Q. Zhang, X. Li, M. J. Serpe, Mater. Horiz. 2019, 6, 1774–1793.
- 16J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, Y. Yu, Nature 2016, 537, 179–184.
- 17Y. Dong, J. Wang, X. Guo, S. Yang, M. O. Ozen, P. Chen, X. Liu, W. Du, F. Xiao, U. Demirci, B. F. Liu, Nat. Commun. 2019, 10, 4087.
- 18H. Xie, C.-Y. Cheng, L. Li, X.-Y. Deng, K.-K. Yang, Y.-Z. Wang, J. Mater. Chem. C 2018, 6, 10422–10427.
- 19A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
- 20Q. Sun, B. Aguila, J. A. Perman, T. Butts, F.-S. Xiao, S. Ma, Chem 2018, 4, 1726–1739.
- 21H. Xu, S. Tao, D. Jiang, Nat. Mater. 2016, 15, 722–726.
- 22Z. Wang, Q. Yu, Y. Huang, H. An, Y. Zhao, Y. Feng, X. Li, X. Shi, J. Liang, F. Pan, P. Cheng, Y. Chen, S. Ma, Z. Zhang, ACS Cent. Sci. 2019, 5, 1352–1359.
- 23G. Zhang, X. Li, Q. Liao, Y. Liu, K. Xi, W. Huang, X. Jia, Nat. Commun. 2018, 9, 2785.
- 24V. S. Vyas, M. Vishwakarma, I. Moudrakovski, F. Haase, G. Savasci, C. Ochsenfeld, J. P. Spatz, B. V. Lotsch, Adv. Mater. 2016, 28, 8749–8754.
- 25M. S. Yao, X. J. Lv, Z. H. Fu, W. H. Li, W. H. Deng, G. D. Wu, G. Xu, Angew. Chem. Int. Ed. 2017, 56, 16510–16514; Angew. Chem. 2017, 129, 16737–16741.
- 26X. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W. H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem. 2018, 10, 1180–1189.
- 27X. Guan, F. Chen, Q. Fang, S. Qiu, Chem. Soc. Rev. 2020, 49, 1357–1384.
- 28H. Wang, C. Qian, J. Liu, Y. Zeng, D. Wang, W. Zhou, L. Gu, H. Wu, G. Liu, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 4862–4871.
- 29S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose, T. Heine, R. Banerjee, Angew. Chem. Int. Ed. 2013, 52, 13052–13056; Angew. Chem. 2013, 125, 13290–13294.
- 30X. Li, J. Qiao, S. W. Chee, H. S. Xu, X. Zhao, H. S. Choi, W. Yu, S. Y. Quek, U. Mirsaidov, K. P. Loh, J. Am. Chem. Soc. 2020, 142, 4932–4943.
- 31Y. Hu, N. Dunlap, S. Wan, S. Lu, S. Huang, I. Sellinger, M. Ortiz, Y. Jin, S. H. Lee, W. Zhang, J. Am. Chem. Soc. 2019, 141, 7518–7525.
- 32X. Guo, T. Mao, Z. Wang, P. Cheng, Y. Chen, S. Ma, Z. Zhang, ACS Cent. Sci. 2020, 6, 787–794.
- 33F. Z. Cui, J. J. Xie, S. Y. Jiang, S. X. Gan, D. L. Ma, R. R. Liang, G. F. Jiang, X. Zhao, Chem. Commun. 2019, 55, 4550–4553.
- 34L. Ascherl, E. W. Evans, J. Gorman, S. Orsborne, D. Bessinger, T. Bein, R. H. Friend, F. Auras, J. Am. Chem. Soc. 2019, 141, 15693–15699.
- 35R. Kulkarni, Y. Noda, D. Kumar Barange, Y. S. Kochergin, P. Lyu, B. Balcarova, P. Nachtigall, M. J. Bojdys, Nat. Commun. 2019, 10, 3228.
- 36A. H. Riebel, R. E. Erickson, C. J. Abshire, P. S. Bailey, J. Am. Chem. Soc. 1960, 82, 1801–1807.
- 37R. Criegee, Angew. Chem. Int. Ed. Engl. 1975, 14, 745–752; Angew. Chem. 1975, 87, 765–771.
- 38U. von Gunten, Water Res. 2003, 37, 1443–1467.
- 39A. D. Nadezhdin, Ind. Eng. Chem. Res. 1988, 27, 548–550.
- 40J. L. Sotelo, F. J. Beltrán, F. J. Benítez, J. Beltrán-Heredia, Ind. Eng. Chem. Res. 1987, 26, 39–43.
- 41Y. S. Kochergin, Y. Noda, R. Kulkarni, K. Škodáková, J. Tarábek, J. Schmidt, M. J. Bojdys, Macromolecules 2019, 52, 7696–7703.
- 42P.-F. Wei, M.-Z. Qi, Z.-P. Wang, S.-Y. Ding, W. Yu, Q. Liu, L.-K. Wang, H.-Z. Wang, W.-K. An, W. Wang, J. Am. Chem. Soc. 2018, 140, 4623–4631.
- 43X. Han, J. Huang, C. Yuan, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2018, 140, 892–895.
- 44H. Liu, J. Chu, Z. Yin, X. Cai, L. Zhuang, H. Deng, Chem 2018, 4, 1696–1709.
- 45S. Chandra, S. Kandambeth, B. P. Biswal, B. Lukose, S. M. Kunjir, M. Chaudhary, R. Babarao, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 17853–17861.
- 46M. S. Lohse, T. Stassin, G. Naudin, S. Wuttke, R. Ameloot, D. De Vos, D. D. Medina, T. Bein, Chem. Mater. 2016, 28, 626–631.
- 47T. Ma, E. A. Kapustin, S. X. Yin, L. Liang, Z. Zhou, J. Niu, L.-H. Li, Y. Wang, J. Su, J. Li, X. Wang, W. D. Wang, W. Wang, J. Sun, O. M. Yaghi, Science 2018, 361, 48–52.
- 48H. L. Nguyen, N. Hanikel, S. J. Lyle, C. Zhu, D. M. Proserpio, O. M. Yaghi, J. Am. Chem. Soc. 2020, 142, 2218–2221.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.