Analogous Mixed Matrix Membranes with Self-Assembled Interface Pathways
Dr. Haozhen Dou
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Mi Xu
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorProf. Baoyu Wang
School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, 450044 China
Search for more papers by this authorDr. Zhen Zhang
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Dan Luo
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Benbing Shi
School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorDr. Guobin Wen
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Mahboubeh Mousavi
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorProf. Aiping Yu
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorProf. Zhengyu Bai
School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007 China
Search for more papers by this authorCorresponding Author
Prof. Zhongyi Jiang
School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Prof. Zhongwei Chen
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Haozhen Dou
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Mi Xu
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorProf. Baoyu Wang
School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, 450044 China
Search for more papers by this authorDr. Zhen Zhang
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Dan Luo
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Benbing Shi
School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorDr. Guobin Wen
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorDr. Mahboubeh Mousavi
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorProf. Aiping Yu
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorProf. Zhengyu Bai
School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007 China
Search for more papers by this authorCorresponding Author
Prof. Zhongyi Jiang
School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Prof. Zhongwei Chen
Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1 Canada
Search for more papers by this authorAbstract
The implementation of mixed matrix membranes (MMMs) for sub-angstrom scale gas separations remains a grand challenge. Herein, a series of analogous mixed matrix membrane (AMMMs) were constructed via molecular-level hybridization by utilizing a reactive ionic liquid (RIL) as the continuous phase and graphene quantum dots (GQD) as nanofiller for sub-angstrom scale ethylene/ethane (0.416 nm/0.443 nm) separation. With a small number of GQDs (3.5 wt%) embedded in GQD/RIL AMMMs, ethylene permeability soared by 3.1-fold, and ethylene/ethane selectivity simultaneously boosted by nearly 60 % and reached up to 99.5, which outperformed most previously reported state-of-the-art membranes. Importantly, the interfacial pathway structure was visualized and their self-assembly mechanism was revealed, where the non-covalent interactions between RIL and GQDs induced the local arrangement of IL chains to self-assemble into plenty of compact and superfast interfacial pathways, contributing to the combination of superhigh permeability and selectivity.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014893-sup-0001-misc_information.pdf2.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A. P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, E. Sivaniah, Nat. Energy 2017, 2, 17086;
- 1bC. Kong, H. Du, L. Chen, B. Chen, Energy Environ. Sci. 2017, 10, 1812–1819;
- 1cY. Cheng, Y. Ying, S. Japip, S.-D. Jiang, T.-S. Chung, S. Zhang, D. Zhao, Adv. Mater. 2018, 30, 1802401;
- 1dF. Rashidi, J. Leisen, S.-J. Kim, A. A. Rownaghi, C. W. Jones, S. Nair, Angew. Chem. Int. Ed. 2019, 58, 236–239; Angew. Chem. 2019, 131, 242–245.
- 2
- 2aS. Zhang, H. Li, H. Li, B. Sengupta, S. Zha, S. Li, M. Yu, Adv. Funct. Mater. 2020, 30, 2002804;
- 2bC. Ma, J. J. Urban, Adv. Funct. Mater. 2019, 29, 1903243;
- 2cY. Liu, W. Wu, P. Li, J. Lin, Z. Yang, J. Wang, ACS Appl. Mater. Interfaces 2019, 11, 9964–9973.
- 3
- 3aN. C. Su, D. T. Sun, C. M. Beavers, D. K. Britt, W. L. Queen, J. J. Urban, Energy Environ. Sci. 2016, 9, 922–931;
- 3bJ. Shen, G. Liu, K. Huang, W. Jin, K.-R. Lee, N. Xu, Angew. Chem. Int. Ed. 2015, 54, 578–582; Angew. Chem. 2015, 127, 588–592;
- 3cI. Kiesow, D. Marczewski, L. Reinhardt, M. Mühlmann, M. Possiwan, W. A. Goedel, J. Am. Chem. Soc. 2013, 135, 4380–4388;
- 3dP. F. Muldoon, S. R. Venna, D. W. Gidley, J. S. Baker, L. Zhu, Z. Tong, F. Xiang, D. P. Hopkinson, S. Yi, A. K. Sekizkardes, N. L. Rosi, ACS Mater. Lett. 2020, 2, 821–828;
- 3eK. Xie, Q. Fu, P. A. Webley, G. G. Qiao, Angew. Chem. Int. Ed. 2018, 57, 8597–8602; Angew. Chem. 2018, 130, 8733–8738;
- 3fX. Jiang, S. Li, Y. Bai, L. Shao, J. Mater. Chem. A 2019, 7, 10898–10904.
- 4
- 4aH. Guo, G. Kong, G. Yang, J. Pang, Z. Kang, S. Feng, L. Zhao, L. Fan, L. Zhu, A. Vicente, P. Peng, Z. Yan, D. Sun, S. Mintova, Angew. Chem. Int. Ed. 2020, 59, 6284–6288; Angew. Chem. 2020, 132, 6343–6347;
- 4bB. Wang, Z. Qiao, J. Xu, J. Wang, X. Liu, S. Zhao, Z. Wang, M. D. Guiver, Adv. Mater. 2020, 32, 1907701;
- 4cJ. E. Bachman, Z. P. Smith, T. Li, T. Xu, J. R. Long, Nat. Mater. 2016, 15, 845;
- 4dY. Liu, Z. Chen, G. Liu, Y. Belmabkhout, K. Adil, M. Eddaoudi, W. Koros, Adv. Mater. 2019, 31, 1807513;
- 4eZ. Zhang, Z. P. Cano, D. Luo, H. Dou, A. Yu, Z. Chen, J. Mater. Chem. A 2019, 7, 20985–21003;
- 4fX. Jiang, S. Li, L. Shao, Energy Environ. Sci. 2017, 10, 1339–1344;
- 4gM. J. Lee, H. T. Kwon, H.-K. Jeong, Angew. Chem. Int. Ed. 2018, 57, 156–161; Angew. Chem. 2018, 130, 162–167;
- 4hJ. B. James, J. Wang, L. Meng, Y. S. Lin, Ind. Eng. Chem. Res. 2017, 56, 7567–7575;
- 4iZ. Bao, J. Wang, Z. Zhang, H. Xing, Q. Yang, Y. Yang, H. Wu, R. Krishna, W. Zhou, B. Chen, Q. Ren, Angew. Chem. Int. Ed. 2018, 57, 16020–16025; Angew. Chem. 2018, 130, 16252–16257.
- 5
- 5aH. Dou, M. Xu, B. Jiang, G. Wen, L. Zhao, B. Wang, A. Yu, Z. Bai, Y. Sun, L. Zhang, Z. Chen, Z. Jiang, Adv. Funct. Mater. 2019, 29, 1905229;
- 5bH. Dou, B. Jiang, X. Xiao, M. Xu, B. Wang, L. Hao, Y. Sun, L. Zhang, J. Membr. Sci. 2018, 557, 76–86;
- 5cK. Jie, N. Onishi, J. A. Schott, I. Popovs, D.-e. Jiang, S. Mahurin, S. Dai, Angew. Chem. Int. Ed. 2020, 59, 2268–2272; Angew. Chem. 2020, 132, 2288–2292;
- 5dR. Zarca, A. C. C. Campos, A. Ortiz, D. Gorri, I. Ortiz, J. Membr. Sci. 2019, 572, 255–261;
- 5eM. Fallanza, A. Ortiz, D. Gorri, I. Ortiz, J. Membr. Sci. 2013, 444, 164–172;
- 5fL. C. Tomé, D. Mecerreyes, C. S. R. Freire, L. P. N. Rebelo, I. M. Marrucho, J. Mater. Chem. A 2014, 2, 5631–5639.
- 6
- 6aM. K. Tran, M.-T. F. Rodrigues, K. Kato, G. Babu, P. M. Ajayan, Nat. Energy 2019, 4, 339–345;
- 6bC. Zhang, Y. Qian, Y. Ding, L. Zhang, X. Guo, Y. Zhao, G. Yu, Angew. Chem. Int. Ed. 2019, 58, 7045–7050; Angew. Chem. 2019, 131, 7119–7124;
- 6cH. Dou, B. Jiang, L. Zhang, M. Xu, Y. Sun, J. Membr. Sci. 2018, 567, 39–48.
- 7
- 7aX. Hou, Y. Hu, A. Grinthal, M. Khan, J. Aizenberg, Nature 2015, 519, 70–73;
- 7bR. Gaillac, P. Pullumbi, K. A. Beyer, K. W. Chapman, D. A. Keen, T. D. Bennett, F.-X. Coudert, Nat. Mater. 2017, 16, 1149–1154;
- 7cN. Giri, M. G. Del Pópolo, G. Melaugh, R. L. Greenaway, K. Rätzke, T. Koschine, L. Pison, M. F. C. Gomes, A. I. Cooper, S. L. James, Nature 2015, 527, 216–220;
- 7dY. Ding, M. Zeng, L. Fu, Matter 2019, 1, 1099–1103.
- 8
- 8aJ. Nie, Z. Wang, Z. Ren, S. Li, X. Chen, Z. L. Wang, Nat. Commun. 2019, 10, 2264;
- 8bB. B. Stogin, L. Gockowski, H. Feldstein, H. Claure, J. Wang, T.-S. Wong, Sci. Adv. 2018, 4, eaat3276;
- 8cA. B. Tesler, Z. Sheng, W. Lv, Y. Fan, D. Fricke, K.-C. Park, J. Alvarenga, J. Aizenberg, X. Hou, ACS Nano 2020, 14, 2465–2474;
- 8dB. Jiang, J. Zhou, M. Xu, H. Dou, H. Zhang, N. Yang, L. Zhang, J. Membr. Sci. 2020, 610, 118243;
- 8eW. Miao, D. Wang, Z. Liu, J. Tang, Z. Zhu, C. Wang, H. Liu, L. Wen, S. Zheng, Y. Tian, L. Jiang, ACS Nano 2019, 13, 3225–3231.
- 9
- 9aS. He, L. Chen, J. Cui, B. Yuan, H. Wang, F. Wang, Y. Yu, Y. Lee, T. Li, J. Am. Chem. Soc. 2019, 141, 19708–19714;
- 9bL. Ma, C. J. E. Haynes, A. B. Grommet, A. Walczak, C. C. Parkins, C. M. Doherty, L. Longley, A. Tron, A. R. Stefankiewicz, T. D. Bennett, J. R. Nitschke, Nat. Chem. 2020, 12, 270–275;
- 9cZ. Deng, W. Ying, K. Gong, Y.-J. Zeng, Y. Yan, X. Peng, Small 2020, 16, 1907016.
- 10
- 10aY. Liu, X. Wang, X. Gao, J. Zheng, J. Wang, A. Volodin, Y. F. Xie, X. Huang, B. Van der Bruggen, J. Zhu, J. Membr. Sci. 2020, 596, 117717;
- 10bP. D. Sutrisna, J. Hou, M. Y. Zulkifli, H. Li, Y. Zhang, W. Liang, D. M. D'Alessandro, V. Chen, J. Mater. Chem. A 2018, 6, 918–931;
- 10cR. Lin, B. Villacorta Hernandez, L. Ge, Z. Zhu, J. Mater. Chem. A 2018, 6, 293–312.
- 11
- 11aA. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. L. Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, J. Gascon, Adv. Funct. Mater. 2016, 26, 3154–3163;
- 11bL. Xiang, L. Sheng, C. Wang, L. Zhang, Y. Pan, Y. Li, Adv. Mater. 2017, 29, 1606999;
- 11cA. Kertik, L. H. Wee, M. Pfannmöller, S. Bals, J. A. Martens, I. F. J. Vankelecom, Energy Environ. Sci. 2017, 10, 2342–2351.
- 12
- 12aG. Yu, X. Zou, L. Sun, B. Liu, Z. Wang, P. Zhang, G. Zhu, Adv. Mater. 2019, 31, 1806853;
- 12bZ. Wang, D. Wang, S. Zhang, L. Hu, J. Jin, Adv. Mater. 2016, 28, 3399–3405;
- 12cY. Lu, H. Zhang, J. Y. Chan, R. Ou, H. Zhu, M. Forsyth, E. M. Marijanovic, C. M. Doherty, P. J. Marriott, M. M. B. Holl, H. Wang, Angew. Chem. Int. Ed. 2019, 58, 16928–16935; Angew. Chem. 2019, 131, 17084–17091.
- 13
- 13aH. Wang, S. He, X. Qin, C. Li, T. Li, J. Am. Chem. Soc. 2018, 140, 17203–17210;
- 13bX. Ma, X. Wu, J. Caro, A. Huang, Angew. Chem. Int. Ed. 2019, 58, 16156–16160; Angew. Chem. 2019, 131, 16302–16306.
- 14
- 14aP. Duan, J. C. Moreton, S. R. Tavares, R. Semino, G. Maurin, S. M. Cohen, K. Schmidt-Rohr, J. Am. Chem. Soc. 2019, 141, 7589–7595;
- 14bA. Ozcan, R. Semino, G. Maurin, A. O. Yazaydin, Chem. Mater. 2020, 32, 1288–1296.
- 15
- 15aG. Zhu, F. Zhang, M. P. Rivera, X. Hu, G. Zhang, C. W. Jones, R. P. Lively, Angew. Chem. Int. Ed. 2019, 58, 2638–2643; Angew. Chem. 2019, 131, 2664–2669;
- 15bG. Han, J. Zhao, R. Zhang, X. Tian, Z. Liu, A. Wang, R. Liu, B. Liu, M.-Y. Han, X. Gao, Z. Zhang, Angew. Chem. Int. Ed. 2019, 58, 7087–7091; Angew. Chem. 2019, 131, 7161–7165;
- 15cB. Li, S. Japip, T.-S. Chung, Nat. Commun. 2020, 11, 1198.
- 16
- 16aR.-B. Lin, L. Li, H.-L. Zhou, H. Wu, C. He, S. Li, R. Krishna, J. Li, W. Zhou, B. Chen, Nat. Mater. 2018, 17, 1128–1133;
- 16bL. Zhang, L. Li, E. Hu, L. Yang, K. Shao, L. Yao, K. Jiang, Y. Cui, Y. Yang, B. Li, B. Chen, G. Qian, Adv. Sci. 2020, 7, 1901918;
- 16cL. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Science 2018, 362, 443–446;
- 16dS. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16.
- 17
- 17aS. H. Kunjattu, V. Ashok, A. Bhaskar, K. Pandare, R. Banerjee, U. K. Kharul, J. Membr. Sci. 2018, 549, 38–45;
- 17bJ. Ploegmakers, S. Japip, K. Nijmeijer, J. Membr. Sci. 2013, 428, 331–340.
- 18
- 18aH. Dou, B. Jiang, M. Xu, Z. Zhang, G. Wen, F. Peng, A. Yu, Z. Bai, Y. Sun, L. Zhang, Z. Jiang, Z. Chen, Angew. Chem. Int. Ed. 2019, 58, 13969–13975; Angew. Chem. 2019, 131, 14107–14113;
- 18bH. Dou, B. Jiang, M. Xu, J. Zhou, Y. Sun, L. Zhang, Chem. Eng. Sci. 2019, 193, 27–37.
- 19
- 19aW. Liu, M. Li, G. Jiang, G. Li, J. Zhu, M. Xiao, Y. Zhu, R. Gao, A. Yu, M. Feng, Z. Chen, Adv. Energy Mater. 2020, 10, 2001275;
- 19bY. Liang, C. Li, S. Li, B. Su, M. Z. Hu, X. Gao, C. Gao, Chem. Eng. J. 2020, 380, 122462.
- 20
- 20aB. Shi, H. Wu, J. Shen, L. Cao, X. He, Y. Ma, Y. Li, J. Li, M. Xu, X. Mao, M. Qiu, H. Geng, P. Yang, Z. Jiang, ACS Nano 2019, 13, 10366–10375;
- 20bW. Wu, Y. Li, J. Liu, J. Wang, Y. He, K. Davey, S.-Z. Qiao, Adv. Mater. 2018, 30, 1707516.
- 21Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Carbon 2012, 50, 4738–4743.
- 22X. Song, Q. Zhou, T. Zhang, H. Xu, Z. Wang, J. Mater. Chem. A 2016, 4, 16896–16905.
- 23J. Liu, N. Wang, L.-J. Yu, A. Karton, W. Li, W. Zhang, F. Guo, L. Hou, Q. Cheng, L. Jiang, D. A. Weitz, Y. Zhao, Nat. Commun. 2017, 8, 2011.
- 24H. Dou, B. Jiang, X. Xiao, M. Xu, X. Tantai, B. Wang, Y. Sun, L. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 13963–13974.
- 25
- 25aB. Jiang, H. Dou, L. Zhang, B. Wang, Y. Sun, H. Yang, Z. Huang, H. Bi, J. Membr. Sci. 2017, 536, 123–132;
- 25bB. Jiang, H. Dou, B. Wang, Y. Sun, Z. Huang, H. Bi, L. Zhang, H. Yang, ACS Sustainable Chem. Eng. 2017, 5, 6873–6882;
- 25cB. Jiang, W. Tao, H. Dou, Y. Sun, X. Xiao, L. Zhang, N. Yang, Ind. Eng. Chem. Res. 2017, 56, 15153–15162.
- 26
- 26aM. Karunakaran, L. F. Villalobos, M. Kumar, R. Shevate, F. H. Akhtar, K. V. Peinemann, J. Mater. Chem. A 2017, 5, 649–656;
- 26bW. Ying, J. Cai, K. Zhou, D. Chen, Y. Ying, Y. Guo, X. Kong, Z. Xu, X. Peng, ACS Nano 2018, 12, 5385–5393.
- 27M. Rungta, C. Zhang, W. J. Koros, L. Xu, AIChE J. 2013, 59, 3475–3489.
- 28
- 28aS. Park, H.-K. Jeong, J. Membr. Sci. 2020, 596, 117689;
- 28bM. Rungta, G. B. Wenz, C. Zhang, L. Xu, W. Qiu, J. S. Adams, W. J. Koros, Carbon 2017, 115, 237–248.
- 29
- 29aT. C. Merkel, R. Blanc, I. Ciobanu, B. Firat, A. Suwarlim, J. Zeid, J. Membr. Sci. 2013, 447, 177–189;
- 29bA. C. C. Campos, R. A. dos Reis, A. Ortiz, D. Gorri, I. Ortiz, Ind. Eng. Chem. Res. 2018, 57, 10071–10085;
- 29cS. Jeong, H. Sohn, S. W. Kang, Chem. Eng. J. 2018, 333, 276–279.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.