Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H-Atom Transfer (HAT)
Hyun Kim
Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorDr. Patrick J. Rogler
Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorDr. Savita K. Sharma
Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorDr. Andrew W. Schaefer
Chemistry Department, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorCorresponding Author
Dr. Edward I. Solomon
Chemistry Department, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorCorresponding Author
Dr. Kenneth D. Karlin
Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorHyun Kim
Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorDr. Patrick J. Rogler
Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorDr. Savita K. Sharma
Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorDr. Andrew W. Schaefer
Chemistry Department, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorCorresponding Author
Dr. Edward I. Solomon
Chemistry Department, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorCorresponding Author
Dr. Kenneth D. Karlin
Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorAbstract
A new end-on low-spin ferric heme peroxide, [(PIm)FeIII−(O22−)]− (PIm-P), and subsequently formed hydroperoxide species, [(PIm)FeIII−(OOH)] (PIm-HP) are generated utilizing the iron-porphyrinate PIm with its tethered axial base imidazolyl group. Measured thermodynamic parameters, the ferric heme superoxide [(PIm)FeIII−(O2⋅−)] (PIm-S) reduction potential (E°′) and the PIm-HP pKa value, lead to the finding of the OO−H bond-dissociation free energy (BDFE) of PIm-HP as 69.5 kcal mol−1 using a thermodynamic square scheme and Bordwell relationship. The results are validated by the observed oxidizing ability of PIm-S via hydrogen-atom transfer (HAT) compared to that of the F8 superoxide complex, [(F8)FeIII−(O2.−)] (S) (F8=tetrakis(2,6-difluorophenyl)porphyrinate, without an internally appended axial base imidazolyl), as determined from reactivity comparison of superoxide complexes PIm-S and S with the hydroxylamine (O-H) substrates TEMPO-H and ABNO-H.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202013791-sup-0001-misc_information.pdf752.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Sono, M. P. Roach, E. D. Coulter, J. H. Dawson, Chem. Rev. 1996, 96, 2841–2887;
- 1bI. G. Denisov, T. M. Makris, S. G. Sligar, I. Schlichting, Chem. Rev. 2005, 105, 2253–2277;
- 1cP. R. Ortiz de Montellano, Chem. Rev. 2010, 110, 932–948;
- 1dX. Huang, J. T. Groves, Chem. Rev. 2018, 118, 2491–2553;
- 1eS. M. Adam, G. B. Wijeratne, P. J. Rogler, D. E. Diaz, D. A. Quist, J. J. Liu, K. D. Karlin, Chem. Rev. 2018, 118, 10840–11022.
- 2P. K. Das, S. Chatterjee, S. Samanta, A. Dey, Inorg. Chem. 2012, 51, 10704–10714.
- 3H. Kim, P. J. Rogler, S. K. Sharma, A. W. Schaefer, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2020, 142, 3104–3116.
- 4K. D. Dubey, S. Shaik, Acc. Chem. Res. 2019, 52, 389–399.
- 5
- 5aR. Davydov, I. D. G. Macdonald, T. M. Makris, S. G. Sligar, B. M. Hoffman, J. Am. Chem. Soc. 1999, 121, 10654–10655;
- 5bR. Davydov, T. M. Makris, V. Kofman, D. E. Werst, S. G. Sligar, B. M. Hoffman, J. Am. Chem. Soc. 2001, 123, 1403–1415;
- 5cR. Davydov, J. D. Satterlee, H. Fujii, A. Sauer-Masarwa, D. H. Busch, B. M. Hoffman, J. Am. Chem. Soc. 2003, 125, 16340–16346;
- 5dR. Garcia-Serres, R. M. Davydov, T. Matsui, M. Ikeda-Saito, B. M. Hoffman, B. H. Huynh, J. Am. Chem. Soc. 2007, 129, 1402–1412;
- 5eS. Shaik, S. Cohen, Y. Wang, H. Chen, D. Kumar, W. Thiel, Chem. Rev. 2010, 110, 949–1017.
- 6
- 6aJ. P. Collman, R. R. Gagnet, A. Christopher, W. T. Robinson, Proc. Natl. Acad. Sci. USA 1974, 71, 1326–1329;
- 6bM. Momenteau, C. A. Reed, Chem. Rev. 1994, 94, 659–698;
- 6cJ. P. Collman, C. J. Sunderland, K. E. Berg, M. A. Vance, E. I. Solomon, J. Am. Chem. Soc. 2003, 125, 6648–6649;
- 6dE. E. Chufán, K. D. Karlin, J. Am. Chem. Soc. 2003, 125, 16160–16161;
- 6eJ.-G. Liu, Y. Naruta, F. Tani, Angew. Chem. Int. Ed. 2005, 44, 1836–1840; Angew. Chem. 2005, 117, 1870–1874;
- 6fJ.-G. Liu, T. Ohta, S. Yamaguchi, T. Ogura, S. Sakamoto, Y. Maeda, Y. Naruta, Angew. Chem. Int. Ed. 2009, 48, 9262–9267; Angew. Chem. 2009, 121, 9426–9431;
- 6gJ.-G. Liu, Y. Shimizu, T. Ohta, Y. Naruta, J. Am. Chem. Soc. 2010, 132, 3672–3673;
- 6hY. Li, S. K. Sharma, K. D. Karlin, Polyhedron 2013, 58, 190–196;
- 6iP. Nagaraju, T. Ohta, J.-G. Liu, T. Ogura, Y. Naruta, Chem. Commun. 2016, 52, 7213–7216;
- 6jA. Singha, A. Dey, Chem. Commun. 2019, 55, 5591–5594;
- 6kH. Kim, S. K. Sharma, A. W. Schaefer, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2019, 58, 15423–15432.
- 7
- 7aK. Tajima, S. Oka, T. Edo, S. Miyake, H. Mano, K. Mukai, H. Sakurai, K. Ishizu, J. Chem. Soc. Chem. Commun. 1995, 1507–1508;
- 7bR. Oliveira, W. Zouari, C. Herrero, F. Banse, B. Schöllhorn, C. Fave, E. Anxolabéhère-Mallart, Inorg. Chem. 2016, 55, 12204–12210;
- 7cK. Sengupta, S. Chatterjee, S. Samanta, A. Dey, Proc. Natl. Acad. Sci. USA 2013, 110, 8431–8436.
- 8
- 8aE. McCandlish, A. R. Miksztal, M. Nappa, A. Q. Spreger, J. S. Valentine, J. Am. Chem. Soc. 1980, 102, 4268–4271;
- 8bM. Selke, M. F. Sisemore, J. S. Valentine, J. Am. Chem. Soc. 1996, 118, 2008–2012;
- 8cD. L. Wertz, J. S. Valentine, Struct. Bonding (Berlin) 2000, 97, 37–60.
- 9S. K. Sharma, A. W. Schaefer, H. Lim, H. Matsumura, P. Moënne-Loccoz, B. Hedman, K. O. Hodgson, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2017, 139, 17421–17430.
- 10
- 10aP. J. Mak, I. G. Denisov, D. Victoria, T. M. Makris, T. Deng, S. G. Sligar, J. R. Kincaid, J. Am. Chem. Soc. 2007, 129, 6382–6383;
- 10bI. G. Denisov, P. J. Mak, T. M. Makris, S. G. Sligar, J. R. Kincaid, J. Phys. Chem. A 2008, 112, 13172–13179;
- 10cR. M. Davydov, T. Yoshida, M. Ikeda-Saito, B. M. Hoffman, J. Am. Chem. Soc. 1999, 121, 10656–10657;
- 10dM. Ibrahim, I. G. Denisov, T. M. Makris, J. R. Kincaid, S. G. Sligar, J. Am. Chem. Soc. 2003, 125, 13714–13718.
- 11D. V. Yandulov, R. R. Schrock, Inorg. Chem. 2005, 44, 1103–1117.
- 12
- 12aJ. J. Warren, T. A. Tronic, J. M. Mayer, Chem. Rev. 2010, 110, 6961–7001;
- 12bC. F. Wise, R. G. Agarwal, J. M. Mayer, J. Am. Chem. Soc. 2020, 142, 10681–10691. In this latter report, from new experiments carried out and other literature considerations, Mayer and co-workers suggest that the CG value for THF solvent be revised to the value 60.4±2 kcal mol−1.
- 13D. A. Quist, M. A. Ehudin, A. W. Schaefer, G. L. Schneider, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2019, 141, 12682–12696.
- 14We are somewhat surprised by the observation that PIm-HP and HP have very similar pKa values. However, explanations for this seem to not now exist the literature and further detailed experimental and computational investigations are required. To compare hydroperoxide pKa's is not straightforward since the conjugate base peroxide complexes PIm-P and P have different structures, end-on vs. side-on.
- 15L. W. Chung, X. Li, H. Hirao, K. Morokuma, J. Am. Chem. Soc. 2011, 133, 20076–20079.
- 16J. B. Gerken, Y. Q. Pang, M. B. Lauber, S. S. Stahl, J. Org. Chem. 2018, 83, 7323–7330.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.