Stabilization of Undercooled Metals via Passivating Oxide Layers
Andrew Martin
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50010 USA
Search for more papers by this authorBoyce S. Chang
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50010 USA
Search for more papers by this authorAlana M. Pauls
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50010 USA
Search for more papers by this authorChuanshen Du
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50010 USA
Search for more papers by this authorCorresponding Author
Martin Thuo
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50010 USA
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50010 USA
Micro-Electronics Research Centre, Ames, IA, 50014 USA
Search for more papers by this authorAndrew Martin
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50010 USA
Search for more papers by this authorBoyce S. Chang
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50010 USA
Search for more papers by this authorAlana M. Pauls
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50010 USA
Search for more papers by this authorChuanshen Du
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50010 USA
Search for more papers by this authorCorresponding Author
Martin Thuo
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50010 USA
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50010 USA
Micro-Electronics Research Centre, Ames, IA, 50014 USA
Search for more papers by this authorAbstract
Undercooling metals relies on frustration of liquid–solid transition mainly by an increase in activation energy. Passivating oxide layers are a way to isolate the core from heterogenous nucleants (physical barrier) while also raising the activation energy (thermodynamic/kinetic barrier) needed for solidification. The latter is due to composition gradients (speciation) that establishes a sharp chemical potential gradient across the thin (0.7–5 nm) oxide shell, slowing homogeneous nucleation. When this speciation is properly tuned, the oxide layer presents a previously unaccounted for interfacial tension in the overall energy landscape of the relaxing material. We demonstrate that 1) the integrity of the passivation oxide is critical in stabilizing undercooled particle, a key tenet in developing heat-free solders, 2) inductive effects play a critical role in undercooling, and 3) the magnitude of the influence of the passivating oxide can be larger than size effects in undercooling.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202013489-sup-0001-misc_information.pdf1.9 MB | Supplementary |
ange202013489-sup-0001-Movie.mp418.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. J. Shahani, A. J. Clarke, MRS Bull. 2020, 45, 906.
- 2D. M. Stefanescu, Science and Engineering of Casting Solidification, Springer, Heidelberg, 2015.
10.1007/978-3-319-15693-4 Google Scholar
- 3W. S. Association, Global Crude Steel Output Increases by 3.4 % in 2019, https://www.worldsteel.org/media-centre/press-releases/2020/Global-crude-steel-output-increases-by-3.4-in-2019.html. Accessed: August 25, 2020.
- 4A. Macfarlane, G. Martin, Glass: a world history, University of Chicago Press, Chicago, 2002.
- 5
- 5aH. W. Kui, A. L. Greer, D. Turnbull, Appl. Phys. Lett. 1984, 45, 615;
- 5bJ. Schroers, Adv. Mater. 2010, 22, 1566;
- 5cM. Telford, Mater. Today 2004, 7, 36;
- 5dJ. Pan, Y. Wang, Q. Guo, D. Zhang, A. Greer, Y. Li, Nat. Commun. 2018, 9, 1;
- 5eT. A. Waniuk, J. Stevick, S. O'Keeffe, D. J. Stratton, J. C. Poole, M. S. Scott, C. D. Prest (Apple Inc Crucible Intellectual Property LLC), United States Patent US9725796B2, 2012;
- 5fT. A. Waniuk, J. Stevick, S. O'Keeffe, D. J. Stratton, J. C. Poole, M. S. Scott, C. D. Prest (Apple Inc Crucible Intellectual Property LLC), United States Patent US8813816B2, 2014.
- 6J. H. Perepezko, J. S. Smith, J. Non-Cryst. Solids 1981, 44, 65.
- 7
- 7aJ. H. Perepezko, Mater. Sci. Eng. 1984, 65, 125;
- 7bJ. H. Perepezko, J. S. Paik, J. Non-Cryst. Solids 1984, 61–62, 113;
- 7cJ. H. Perepezko, J. S. Paik, MRS Symp. Proc. 1981, 8, 49 (15 pages);
10.1557/PROC-8-49 Google Scholar
- 7dD. M. Herlach, Metals 2014, 4, 196;
- 7eD. M. Herlach, Annu. Rev. Mater. Sci. 1991, 21, 23.
- 8S. Çınar, I. D. Tevis, J. Chen, M. Thuo, Sci. Rep. 2016, 6, 21864.
- 9
- 9aG. Parravicini, A. Stella, P. Ghigna, G. Spinolo, A. Migliori, F. d'Acapito, R. Kofman, Appl. Phys. Lett. 2006, 89, 033123;
- 9bP. Shingu, A. Shimohigashi, K. Ishihara in Rapidly Quenched Metals (Eds: S. Steeb, H. Warlimont), Elsevier, Amsterdam, 1985, p. 35 (
10.1016/B978-0-444-86939-5.50015-4 Google Scholarhttps://doi.org/10.1016/B978-0-444-86939-5.50015-4).
- 10
- 10aD. M. Herlach, R. F. Cochrane, I. Egry, H. J. Fecht, A. L. Greer, Int. Mater. Rev. 1993, 38, 273;
- 10bG. Devaud, D. Turnbull, Mater. Res. Soc. Symp. Proc. 2011, 57, 89;
10.1557/PROC-57-89 Google Scholar
- 10cG. Devaud, D. Turnbull, Appl. Phys. Lett. 1985, 46, 844;
- 10dW. Hofmeister, M. Robinson, R. Bayuzick, Appl. Phys. Lett. 1986, 49, 1342.
- 11
- 11aK. F. Kelton, A. L. Greer in Solidification of Containerless Undercooled Melts (Eds: D. Herlach, D. Matson), Wiley-VCH, Weinheim, 2012, p. 87;
10.1002/9783527647903.ch5 Google Scholar
- 11bP. G. Debenedetti, F. H. Stillinger, Nature 2001, 410, 259.
- 12
- 12aP. G. Debenedetti, F. H. Stillinger, M. S. Shell, J. Phys. Chem. B 2003, 107, 14434;
- 12bJ. C. Mauro, R. J. Loucks, A. K. Varshneya, P. K. Gupta, Sci. Model Simul. 2008, 15, 241.
- 13
- 13aL. Cademartiri, M. M. Thuo, C. A. Nijhuis, W. F. Reus, S. Tricard, J. R. Barber, R. N. S. Sodhi, P. Brodersen, C. Kim, R. C. Chiechi, G. M. Whitesides, J. Phys. Chem. C 2012, 116, 10848;
- 13bZ. J. Farrell, C. Tabor, Langmuir 2018, 34, 234.
- 14
- 14aJ. H. Perepezko, J. L. Sebright, P. G. Höckel, G. Wilde, Mater. Sci. Eng. A 2002, 326, 144;
- 14bM. H. Malakooti, N. Kazem, J. Yan, C. Pan, E. J. Markvicka, K. Matyjaszewski, C. Majidi, Adv. Funct. Mater. 2019, 29, 1906098;
- 14cB. S. Chang, R. Tutika, J. Cutinho, S. Oyola-Reynoso, J. Chen, M. D. Bartlett, M. M. Thuo, Mater. Horiz. 2018, 5, 416;
- 14dA. Martin, B. S. Chang, Z. Martin, D. Paramanik, C. Frankiewicz, S. Kundu, I. D. Tevis, M. Thuo, Adv. Funct. Mater. 2019, 29, 1903687;
- 14eM. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, Adv. Funct. Mater. 2008, 18, 1097;
- 14fA. R. Jacob, D. P. Parekh, M. D. Dickey, L. C. Hsiao, Langmuir 2019, 35, 11774.
- 15
- 15aJ. Cutinho, B. S. Chang, S. Oyola-Reynoso, J. Chen, S. S. Akhter, I. D. Tevis, N. J. Bello, A. Martin, M. C. Foster, M. M. Thuo, ACS Nano 2018, 12, 4744;
- 15bA. Martin, W. Kiarie, B. Chang, M. Thuo, Angew. Chem. Int. Ed. 2020, 59, 352; Angew. Chem. 2020, 132, 360;
- 15cR. N. S. Sodhi, P. Brodersen, L. Cademartiri, M. Thuo, C. A. Nijhuis, Surf. Interface Anal. 2017, 49, 1309.
- 16A. Martin, C. Du, B. Chang, M. Thuo, Chem. Mater. 2020, 32, 9045–9055.
- 17Q. Jiang, Z. Wen, Thermodynamics of Materials, Springer, Berlin, 2011.
10.1007/978-3-642-14718-0 Google Scholar
- 18J. Lowengrub, J. Xu, A. Voigt, Fluid Dyn. Mater. Process. 2007, 3, 1.
- 19L.-L. Wang, D. D. Johnson, J. Am. Chem. Soc. 2009, 131, 14023.
- 20H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, 3rd ed., Wiley-VCH, Weinheim, 2013.
- 21J. Lowengrub, J. J. Xu, A. Voigt, Fluid Dyn. Mater. Process. 2007, 3, 1.
- 22
- 22aL. Anand, J. Mech. Phys. Solids 2012, 60, 1983;
- 22bC. V. Di Leo, E. Rejovitzky, L. Anand, J. Mech. Phys. Solids 2014, 70, 1.
- 23
- 23aA. Atkinson, Mater. Sci. Technol. 1988, 4, 1046;
- 23bZ. Xu, K. M. Rosso, S. Bruemmer, Phys. Chem. Chem. Phys. 2012, 14, 14534.
- 24
- 24aR. Alert, J. Casademunt, P. Tierno, Phys. Rev. Lett. 2014, 113, 198301;
- 24bR. Alert, P. Tierno, J. Casademunt, Nat. Commun. 2016, 7, 13067.
- 25R. Shuttleworth, Proc. Phys. Soc. London Sect. A 1950, 63, 444.
- 26I. D. Tevis, L. B. Newcomb, M. Thuo, Langmuir 2014, 30, 14308.
- 27
- 27aB. S. Chang, A. Martin, B. Thomas, A. Li, R. W. Dorn, J. Gong, A. J. Rossini, M. M. Thuo, ACS Mater. Lett. 2020, 2, 1211;
- 27bB. S. Chang, B. Thomas, J. Chen, I. D. Tevis, P. Karanja, S. Çınar, A. Venkatesh, A. J. Rossini, M. M. Thuo, Nanoscale 2019, 11, 14060.
- 28A. Martin, C. Du, A. M. Pauls, T. Ward, M. Thuo, Adv. Mater. Interfaces 2020, 7, 2001294.
- 29M. Batzill, U. Diebold, Prog. Surf. Sci. 2005, 79, 47.
- 30
- 30aR. K. Kramer, C. Majidi, R. J. Wood, Adv. Funct. Mater. 2013, 23, 5292;
- 30bT. J. Wallin, J. Pikul, R. F. Shepherd, Nat. Rev. Mater. 2018, 3, 84;
- 30cM. D. Dickey, Adv. Mater. 2017, 29, 1606425;
- 30dM. Tavakoli, M. H. Malakooti, H. Paisana, Y. Ohm, D. Green Marques, P. Alhais Lopes, A. P. Piedade, A. T. de Almeida, C. Majidi, Adv. Mater. 2018, 30, 1801852;
- 30eZ. Zhu, S.-Z. Guo, T. Hirdler, C. Eide, X. Fan, J. Tolar, M. C. McAlpine, Adv. Mater. 2018, 30, 1707495.
- 31J. T. Law, J. Phys. Chem. 1957, 61, 1200.
- 32N. Cabrera, N. F. Mott, Rep. Prog. Phys. 1949, 12, 163.
- 33R. F. Tournier, Metals 2014, 4, 359.
- 34
- 34aJ. Chen, B. Chang, S. Oyola-Reynoso, Z. Wang, M. Thuo, ACS Omega 2017, 2, 2072;
- 34bJ. Chen, Z. Wang, S. Oyola-Reynoso, M. M. Thuo, Langmuir 2017, 33, 13451.
- 35J. J. Chang, A. Martin, C. Du, A. Pauls, M. M. Thuo, Angew. Chem. Int. Ed. 2020, 59, 16346–16351; Angew. Chem. 2020, 132, 16488–16493.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.