A Resol-Assisted Cationic Coordinative Co-assembly Approach to Mesoporous ABO3 Perovskite Oxides with Rich Oxygen Vacancy for Enhanced Hydrogenation of Furfural to Furfuryl Alcohol
Yuenan Zheng
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorRui Zhang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorLing Zhang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorQinfen Gu
Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria, 3168 Australia
Search for more papers by this authorCorresponding Author
Prof. Zhen-An Qiao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorYuenan Zheng
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorRui Zhang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorLing Zhang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorQinfen Gu
Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria, 3168 Australia
Search for more papers by this authorCorresponding Author
Prof. Zhen-An Qiao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorAbstract
It is a challenge to obtain ABO3 perovskite oxides with favorable crystal phase and well-defined porous structure via existing approaches. Here, we design an effective and versatile strategy to construct mesoporous ABO3 perovskite oxides with functionalized nanocrystal frameworks and abundant oxygen vacancy sites via a resol-assisted cationic coordinative co-assembly approach. The as-prepared oxygen vacancy-rich mesoporous LaMnO3 as heterogeneous catalyst exhibits remarkable catalytic activity and stability for hydrogenation of furfural to furfuryl alcohol, including over 99 % conversion and 96 % selectivity. Combined with density functional theory calculation, the catalytic mechanism is elucidated, revealing that porous LaMnO3 nanocrystal framework is conducive to expose oxygen deficiency sites, which can facilitate the interaction between catalyst surface and catalytic substrate, leading to lower barrier in hydrogenation process.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202012416-sup-0001-misc_information.pdf2.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383–1385.
- 2J. J. Zhu, H. L. Li, L. Y. Zhong, P. Xiao, X. L. Xu, X. G. Yang, Z. Zhao, J. L. Li, ACS Catal. 2014, 4, 2917–2940.
- 3X. M. Xu, W. Wang, W. Zhou, Z. P. Shao, Small Methods 2018, 2, 1800071.
- 4H. W. Park, D. U. Lee, P. Zamani, M. H. Seo, L. F. Nazar, Z. Chen, Nano Energy 2014, 10, 192–200.
- 5R. K. Hona, F. Ramezanipour, Angew. Chem. Int. Ed. 2019, 58, 2060–2063; Angew. Chem. 2019, 131, 2082–2085.
- 6K. Kamata, Bull. Chem. Soc. Jpn. 2019, 92, 133–151.
- 7Q. Deng, R. Gao, X. Li, J. Wang, Z. L. Zeng, J. J. Zou, S. G. Deng, ACS Catal. 2020, 10, 7355–7366.
- 8X. S. Luo, L. M. Bai, J. J. Xing, X. W. Zhu, D. L. Xu, B. H. Xie, Z. D. Gan, G. B. Li, H. Liang, ACS Appl. Mater. Interfaces 2019, 11, 35720–35728.
- 9J. Kim, X. Yin, K. C. Tsao, S. H. Fang, H. Yang, J. Am. Chem. Soc. 2014, 136, 14646–14649.
- 10Y. N. Yi, H. Liu, B. X. Chu, Z. Z. Qin, L. H. Dong, H. X. He, C. J. Tang, M. G. Fan, L. Bin, Chem. Eng. J. 2019, 369, 511–521.
- 11P. Xiao, J. J. Zhu, D. Zhao, Z. Zhao, F. Zaera, Y. J. Zhu, ACS Appl. Mater. Interfaces 2019, 11, 15517–15527.
- 12Y. Jia, J. Chen, X. D. Yao, Mater. Chem. Front. 2018, 2, 1250.
- 13J. Yang, L. M. Shi, L. i. Li, Y. R. Fang, C. Q. Pan, Y. H. Zhu, Z. F. Liang, S. Hoang, Z. G. Li, Y. B. Guo, Catal. Today 2020, https://doi.org/10.1016/j.cattod.2020.06.043.
- 14J. Yang, S. Y. Hu, Y. R. Fang, S. Hoang, L. Li, W. W. Yang, Z. F. Liang, J. Wu, J. P. Hu, W. Xiao, C. Q. Pan, Z. Luo, J. Ding, L. Z. Zhang, Y. B. Guo, ACS Catal. 2019, 9, 9751–9763.
- 15Y. Jia, L. Z. Zhang, G. P. Gao, H. Chen, B. Wang, J. Z. Zhou, M. T. Soo, M. Hong, X. C. Yan, G. R. Qian, J. Zou, A. J. Du, X. D. Yao, Adv. Mater. 2017, 29, 1700017.
- 16X. Y. Zhang, X. Q. Liu, Y. X. Zeng, Y. X. Tong, X. H. Lu, Small Methods 2020, 4, 1900823.
- 17Z. H. Xiao, C. Xie, Y. Y. Wang, R. Chen, S. Y. Wang, J. Energy Chem. 2021, 53, 208–225.
- 18L. Hua, Z. Y. Hui, Y. Sun, X. Zhao, H. Xu, Y. J. Gong, R. Y. Chen, C. Y. Yu, J. Y. Zhou, G. Z. Sun, W. Huang, Nanoscale 2018, 10, 21006.
- 19D. A. Tompsett, S. C. Parker, M. S. Islam, J. Mater. Chem. A 2014, 2, 15509.
- 20T. Zhai, S. Sun, X. J. Liu, C. L. Liang, G. M. Wang, H. Xia, Adv. Mater. 2018, 30, 1706640.
- 21P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Nature 1998, 396, 152.
- 22W. Li, Q. Yue, Y. H. Deng, D. Y. Zhao, Adv. Mater. 2013, 25, 5129–5152.
- 23Z. K. Sun, B. Sun, M. H. Qiao, J. Wei, Q. Yue, C. Wang, Y. H. Deng, S. Kaliaguine, D. Y. Zhao, J. Am. Chem. Soc. 2012, 134, 17653–17660.
- 24H. L. Xiong, H. R. Zhou, G. Sun, Z. L. Liu, L. L. Zhang, L. Zhang, F. Du, Z. A. Qiao, S. Dai, Angew. Chem. Int. Ed. 2020, 59, 11053–11060; Angew. Chem. 2020, 132, 11146–11153.
- 25N. Tarutani, Y. Tokudome, M. Jobbágy, F. A. Viva, G. J. A. A. Soler-Illia, M. Takahashi, Chem. Mater. 2016, 28, 5606–5610.
- 26D. Y. Feng, T. N. Gao, M. H. Fan, A. Li, K. Q. Li, T. Wang, Q. S. Huo, Z. A. Qiao, NPG Asia Mater. 2018, 10, 800–809.
- 27Y. B. Yang, W. Yin, S. T. Wu, X. D. Yang, W. Xia, Y. Shen, Y. H. Huang, A. Y. Cao, Q. Yuan, ACS Nano 2016, 10, 1240–1248.
- 28C. Y. Wang, X. Y. Wan, L. L. Duan, P. Y. Zeng, L. L. Liu, D. Y. Guo, Y. Xia, A. A. Elzatahry, Y. Y. Xia, W. Li, D. Y. Zhao, Angew. Chem. Int. Ed. 2019, 58, 15863–15868; Angew. Chem. 2019, 131, 16010–16015.
- 29S. Q. Hu, L. X. Zhang, H. Y. Liu, Z. W. Cao, W. G. Yu, X. F. Zhu, W. S. Yang, J. Power Sources 2019, 443, 227268.
- 30X. D. Li, P. Jia, T. F. Wang, ACS Catal. 2016, 6, 7621–7640.
- 31C. Espro, B. Gumina, T. Szumelda, E. Paone, F. Mauriello, Catalysts 2018, 8, 313.
- 32X. Tang, J. N. Wei, N. Ding, Y. Sun, X. H. Zeng, L. Hu, S. J. Liu, T. Z. Lei, L. Lin, Renewable Sustainable Energy Rev. 2017, 77, 287–296.
- 33D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621–6686.
- 34A. S. Kulkarni, R. V. Jayaram, Appl. Catal. A 2003, 252, 225–230.
- 35F. Polo-Garzon, Z. L. Wu, J. Mater. Chem. A 2018, 6, 2877.
- 36H. Kleineberg, M. Eisenacher, H. Lange, H. Strutz, R. Palkovits, Catal. Sci. Technol. 2016, 6, 6057.
- 37A. S. Poyraz, C. H. Kuo, S. Biswas, C. K. King′ondu, S. L. Suib, Nat. Commun. 2013, 4, 2952.
- 38P. P. Chu, H.-D. Wu, Polymer 2000, 41, 101–109.
- 39Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. F. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053–7059; Angew. Chem. 2005, 117, 7215–7221.
- 40N. A. Merino, B. P. Barbero, P. Eloy, L. E. Cadús, Appl. Surf. Sci. 2006, 253, 1489–1493.
- 41Y. N. Zheng, Y. K. Yi, M. H. Fan, H. Y. Liu, X. Li, R. Zhang, M. T. Li, Z.-A. Qiao, Energy Storage Mater. 2019, 23, 678–683.
- 42S. Gao, Z. T. Sun, W. Liu, X. C. Jiao, X. L. Zu, Q. T. Hu, Y. F. Sun, T. Yao, W. H. Zhang, S. Q. Wei, Y. Xie, Nat. Commun. 2017, 8, 14503.
- 43D. Y. Feng, Y. B. Dong, L. L. Zhang, X. Ge, W. Zhang, S. Dai, Z.-A. Qiao, Angew. Chem. Int. Ed. 2020, 59, 19503–19509; Angew. Chem. 2020, 132, 19671–19677.
- 44Z. G. Geng, X. D. Kong, W. W. Chen, H. Y. Su, Y. Liu, F. Cai, G. X. Wang, J. Zeng, Angew. Chem. Int. Ed. 2018, 57, 6054–6059; Angew. Chem. 2018, 130, 6162–6167.
- 45W. Q. Song, A. S. Poyraz, Y. T. Meng, Z. Ren, S.-Y. Chen, S. L. Suib, Chem. Mater. 2014, 26, 4629–4639.
- 46H.-Y. Su, K. Sun, J. Mater. Sci. 2015, 50, 1701–1709.
- 47Y.-C. Zhang, Z. Li, L. Zhang, L. Pan, X. W. Zhang, L. Wang, F. Aleem, J.-J. Zou, Appl. Catal. B 2018, 224, 101–108.
- 48D. X. Ji, L. Fan, L. Tao, Y. J. Sun, M. G. Li, G. R. Yang, T. Q. Tran, S. Ramakrishna, S. J. Guo, Angew. Chem. Int. Ed. 2019, 58, 13840–13844; Angew. Chem. 2019, 131, 13978–13982.
- 49S. H. Lee, G. Nam, J. Sun, J.-S. Lee, H.-W. Lee, W. Chen, J. Cho, Y. Cui, Angew. Chem. Int. Ed. 2016, 55, 8599–8604; Angew. Chem. 2016, 128, 8741–8746.
- 50M. H. Haider, N. F. Dummer, D. W. Knight, R. L. Jenkins, M. Howard, J. Moulijn, S. H. Taylor, G. J. Hutchings, Nat. Chem. 2015, 7, 1028–1032.
- 51K. Tomishige, Y. Nakagawa, M. Tamura, Green Chem. 2017, 19, 2876–2924.
- 52M. J. Gilkey, B. J. Xu, ACS Catal. 2016, 6, 1420–1436.
- 53C. Xu, E. Paone, D. R. Padrón, R. Luque, F. Mauriello, Chem. Soc. Rev. 2020, 49, 4273–4306.
- 54M. J. Gilkey, P. Panagiotopoulou, A. Vironenko, G. R. Jenness, D. G. Vlachos, B. J. Xu, ACS Catal. 2015, 5, 3988–3994.
- 55Y. Boyjoo, G. Rochard, J.-M. Giraudon, J. Liu, J.-F. Lamonier, Sustainable Mater. Technol. 2018, 17, e00091.
- 56M. M. Villaverde, N. M. Bertero, T. F. Garetto, A. J. Marchi, Catal. Today 2013, 213, 87–92.
- 57S. H. Zhou, G. X. Chen, X. Feng, M. Wang, T. Song, D. T. Liu, F. C. Lu, H. S. Qi, Green Chem. 2018, 20, 3593.
- 58M. W. Ma, P. Hou, J. J. Cao, H. Liu, X. Y. Yan, X. L. Xu, H. J. Yue, G. Tian, S. H. Feng, Green Chem. 2019, 21, 5969.
- 59S. Sitthisa, W. An, D. E. Resasco, J. Catal. 2011, 284, 90–101.
- 60H. B. Zhang, X.-K. Gu, C. Canlas, A. J. Kropf, P. Aich, J. P. Greeley, J. W. Elam, R. J. Meyers, J. A. Dumesic, P. C. Stair, C. L. Marshall, Angew. Chem. Int. Ed. 2014, 53, 12132–12136; Angew. Chem. 2014, 126, 12328–12332.
- 61J. W. Xu, Y. Zhang, X. L. Xu, X. Z. Fang, R. Xi, Y. M. Liu, R. Y. Zheng, X. Wang, ACS Catal. 2019, 9, 4030–4045.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.