Hot-Electron-Induced Photothermal Catalysis for Energy-Dependent Molecular Oxygen Activation
Wei Zhang
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Yu Chen
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Gong Zhang
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Xiao Tan
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
Guilin University of Technology, Guilin, 541006 China
Search for more papers by this authorCorresponding Author
Dr. Qinghua Ji
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Zhaowu Wang
School of Physics and Engineering, Henan University of Science and Technology, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Luoyang, Henan, 471023 China
Search for more papers by this authorProf. Huijuan Liu
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Jiuhui Qu
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorWei Zhang
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Yu Chen
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Gong Zhang
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Xiao Tan
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
Guilin University of Technology, Guilin, 541006 China
Search for more papers by this authorCorresponding Author
Dr. Qinghua Ji
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Zhaowu Wang
School of Physics and Engineering, Henan University of Science and Technology, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Luoyang, Henan, 471023 China
Search for more papers by this authorProf. Huijuan Liu
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Jiuhui Qu
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorAbstract
Hot electrons activate reactants and reduce the activation energy barrier (Ea) of a reaction through electron donation. However, a comprehensive understanding of the intrinsic driving force of this electron-donating effect is lacking, let alone the precise manipulation of electron donation processes. Herein, the essential and promotional role of hot electron energy on the electron-donating effect was elucidated using molecular oxygen activation (MOA) as a model reaction. Through providing an available electron source to the conventional photo-thermal conversion system, the high energy carried by hot electrons was liberated and greatly enhanced the electron donation towards the LUMO (π*) orbit of O2. The energy was also transferred to O2 and elevated the potential energy surface (PES) of MOA, which was reflected by the enhanced formation of superoxide oxygen anions. As predicted, the Ea of MOA decreased by 45.1 % and exhibited a substantial light dependence, demonstrating that MOA became energy-efficient due to improved exploitation and conversion of photon energies.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202012306-sup-0001-misc_information.pdf1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. W. Roberts, Chem. Soc. Rev. 1989, 18, 451.
- 2W. Huang, G. Sun, T. Cao, Chem. Soc. Rev. 2017, 46, 1977.
- 3M. M. Montemore, M. A. van Spronsen, R. J. Madix, C. M. Friend, Chem. Rev. 2018, 118, 2816.
- 4R. Pal, L. M. Wang, Y. Pei, L. S. Wang, X. C. Zeng, J. Am. Chem. Soc. 2012, 134, 9438.
- 5Y. Park, J. Choi, C. Lee, A. N. Cho, D. W. Cho, N. G. Park, H. Ihee, J. Y. Park, Nano Lett. 2019, 19, 5489.
- 6H. Sakamoto, T. Ohara, N. Yasumoto, Y. Shiraishi, S. Ichikawa, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 2015, 137, 9324.
- 7N. Siemer, A. Lüken, M. Zalibera, J. Frenzel, D. Muñoz-Santiburcio, A. Savitsky, W. Lubitz, M. Muhler, D. Marx, J. Strunk, J. Am. Chem. Soc. 2018, 140, 18082.
- 8L. B. Hoch, P. G. O'Brien, A. Jelle, A. Sandhel, D. D. Perovic, C. A. Mims, G. A. Ozin, ACS Nano 2016, 10, 9017.
- 9S. Linic, U. Aslam, C. Boerigter, M. Morabito, Nat. Mater. 2015, 14, 567.
- 10L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas, Science 2018, 362, 69.
- 11Z.-j. Wang, H. Song, H. Pang, Y. Ning, T. D. Dao, Z. Wang, H. Chen, Y. Weng, Q. Fu, T. Nagao, Y. Fang, J. Ye, Appl. Catal. B 2019, 250, 10.
- 12Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394.
- 13Y. H. Wang, J. B. Le, W. Q. Li, J. Wei, P. M. Radjenovic, H. Zhang, X. S. Zhou, J. Cheng, Z. Q. Tian, J. F. Li, Angew. Chem. Int. Ed. 2019, 58, 16062; Angew. Chem. 2019, 131, 16208.
- 14M. Ghoussoub, M. Xia, P. N. Duchesne, D. Segal, G. Ozin, Energy Environ. Sci. 2019, 12, 1122.
- 15Z. Zhang, J. Huang, Y. Fang, M. Zhang, K. Liu, B. Dong, Adv. Mater. 2017, 29, 1606688.
- 16L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, Energy Environ. Sci. 2018, 11, 106.
- 17J. Y. Park, G. A. Somorjai, MRS Bull. 2020, 45, 26.
- 18P. Christopher, H. Xin, A. Marimuthu, S. Linic, Nat. Mater. 2012, 11, 1044.
- 19G. M. Carroll, H. Zhang, J. R. Dunklin, E. M. Miller, N. R. Neale, J. van de Lagemaat, Energy Environ. Sci. 2019, 12, 1648.
- 20L. Wang, X. Liu, J. Luo, X. Duan, J. Crittenden, C. Liu, S. Zhang, Y. Pei, Y. Zeng, X. Duan, Angew. Chem. Int. Ed. 2017, 56, 7610; Angew. Chem. 2017, 129, 7718.
- 21W. Li, M. C. Tekell, Y. Huang, K. Bertelsmann, M. Lau, D. Fan, Adv. Energy Mater. 2018, 8, 1802108.
- 22Y. Yuan, Z. Ye, H. Lu, B. Hu, Y. Li, D. Chen, J. Zhong, Z. Yu, Z. Zou, ACS Catal. 2016, 6, 532.
- 23L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 2016, 12, 1527.
- 24B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, N. J. Halas, Nat. Commun. 2015, 6, 7797.
- 25C. Liu, D. Kong, P. C. Hsu, H. Yuan, H. W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, P. A. Maraccini, K. M. Parker, A. B. Boehm, Y. Cui, Nat. Nanotechnol. 2016, 11, 1098.
- 26T. V. Albu, A. B. Anderson, Electrochim. Acta 2001, 46, 3001.
- 27B. C. Hodges, E. L. Cates, J. H. Kim, Nat. Nanotechnol. 2018, 13, 642.
- 28A. Studer, D. P. Curran, Nat. Chem. 2014, 6, 765.
- 29X. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. Shen, Nature 2009, 458, 746.
- 30S. M. Kim, S. J. Lee, S. H. Kim, S. Kwon, K. J. Yee, H. Song, G. A. Somorjai, J. Y. Park, Nano Lett. 2013, 13, 1352.
- 31J. Y. Park, L. R. Baker, G. A. Somorjai, Chem. Rev. 2015, 115, 2781.
- 32H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, H. Shin, Nano Lett. 2014, 14, 4413.
- 33R. Chen, F. Fan, T. Dittrich, C. Li, Chem. Soc. Rev. 2018, 47, 8238.
- 34J. Y. Cheon, J. H. Kim, J. H. Kim, K. C. Goddeti, J. Y. Park, S. H. Joo, J. Am. Chem. Soc. 2014, 136, 8875.
- 35Z. Wang, W. Ma, C. Chen, H. Ji, J. Zhao, Chem. Eng. J. 2011, 170, 353.
- 36D. C. Hurum, K. A. Gray, R. Tijana, M. C. Thurnauer, J. Phys. Chem. B 2005, 109, 977.
- 37D. C. Hurum, A. G. Agrios, S. E. Crist, K. A. Gray, T. Rajh, M. C. Thurnauer, J. Electron. Spectrosc. 2006, 150, 155.
- 38S. Stoll, A. Schweiger, Chem. Phys. Lett. 2003, 380, 464.
- 39H. Ebert, J. Abart, J. Voitländer, J. Chem. Phys. 1983, 79, 4719.
- 40G. van Veen, J. Magn. Reason. 1978, 30, 91.
- 41D. Wang, G. R. Hanson, J. Magn. Reason. 1995, 117, 1.
- 42R. F. Howe, M. Gratzel, J. Phys. Chem. 1987, 91, 3906.
- 43D. L. Huestis, W. A. Goddard, Chem. Phys. Lett. 1972, 16, 157.
- 44E. Zanchini, Int. J. Therm. Sci. 2000, 39, 110.
- 45P. G. O'Brien, K. K. Ghuman, A. A. Jelle, A. Sandhel, T. E. Wood, J. Y. Y. Loh, J. Jia, D. Perovic, C. V. Singh, N. P. Kherani, C. A. Mims, G. A. Ozin, Energy Environ. Sci. 2018, 11, 3443.
- 46J. Tang, X. J. Gao, H. Tang, X. Zeng, Chem. Commun. 2019, 55, 1584.
- 47R. D. Spratley, G. C. Pimentel, J. Am. Chem. Soc. 1966, 88, 2394.
- 48M. G. Scheibel, Y. Wu, A. C. Stuckl, L. Krause, E. Carl, D. Stalke, B. de Bruin, S. Schneider, J. Am. Chem. Soc. 2013, 135, 17719.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.