Observation of the Reaction Intermediates of Methanol Dehydrogenation by Cationic Vanadium Clusters
Corresponding Author
Gao-Lei Hou
Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
Search for more papers by this authorEndre Faragó
Department of Inorganic and Analytical Chemistry, MTA-BME Computer Driven Chemistry Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
Search for more papers by this authorDániel Buzsáki
Department of Inorganic and Analytical Chemistry, MTA-BME Computer Driven Chemistry Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
Search for more papers by this authorLászló Nyulászi
Department of Inorganic and Analytical Chemistry, MTA-BME Computer Driven Chemistry Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
Search for more papers by this authorCorresponding Author
Tibor Höltzl
Department of Inorganic and Analytical Chemistry, MTA-BME Computer Driven Chemistry Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
Furukawa Electric Institute of Technology, Késmárk utca 28/A, 1158 Budapest, Hungary
Search for more papers by this authorEwald Janssens
Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
Search for more papers by this authorCorresponding Author
Gao-Lei Hou
Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
Search for more papers by this authorEndre Faragó
Department of Inorganic and Analytical Chemistry, MTA-BME Computer Driven Chemistry Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
Search for more papers by this authorDániel Buzsáki
Department of Inorganic and Analytical Chemistry, MTA-BME Computer Driven Chemistry Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
Search for more papers by this authorLászló Nyulászi
Department of Inorganic and Analytical Chemistry, MTA-BME Computer Driven Chemistry Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
Search for more papers by this authorCorresponding Author
Tibor Höltzl
Department of Inorganic and Analytical Chemistry, MTA-BME Computer Driven Chemistry Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
Furukawa Electric Institute of Technology, Késmárk utca 28/A, 1158 Budapest, Hungary
Search for more papers by this authorEwald Janssens
Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
Search for more papers by this authorAbstract
A mass spectrometric study of the reactions of vanadium cationic clusters with methanol in a low-pressure collision cell is reported. For comparison, the reaction of methanol with cobalt cationic clusters was studied. For vanadium, the main reaction products are fully dehydrogenated species, and partial dehydrogenation and non-dehydrogenation species are observed as minors, for which the relative intensities increase with cluster size and also at low cluster source temperature cooled by liquid nitrogen; no dehydrogenation products were observed for cobalt clusters. Quantum chemical calculations explored the reaction pathways and revealed that the fully dehydrogenation products of the reaction between Vn+ and methanol are Vn(C)(O)+, in which C and O are separated owing to the high oxophilicity of vanadium. The partial dehydrogenation and non-dehydrogenation species were verified to be reaction intermediates along the reaction pathway, and their most probable structures were proposed.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202011109-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Methanol: Science and Engineering (Eds.: A. Basile, F. Dalena), Elsevier, Amsterdam, 2017.
- 2A. W. Franz, H. Kronemayer, D. Pfeiffer, R. D. Pilz, G. Reuss, W. Disteldorf, A. O. Gamer, A. Hilt, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2016, pp. 1–34.
- 3G. A. Olah, A. Goeppert, G. K. Surya Prakash, J. Org. Chem. 2009, 74, 487–498.
- 4A. Goeppert, M. Czaun, J.-P. Jones, G. K. Surya Prakash, G. A. Olah, Chem. Soc. Rev. 2014, 43, 7995–8048.
- 5G. A. Olah, Angew. Chem. Int. Ed. 2005, 44, 2636–2639; Angew. Chem. 2005, 117, 2692–2696.
- 6
- 6aG. Apanel, E. Johnson, Fuel Cell. Bull. 2004, 2004, 12–17;
10.1016/S1464-2859(04)00410-9 Google Scholar
- 6bS. Mekhilef, R. Saidur, A. Safari, Renewable Sustainable Energy Rev. 2012, 16, 981–989.
- 7S. Sá, H. Silva, L. Brandão, J. M. Sousa, A. Mendes, Appl. Catal. B 2010, 99, 43–57.
- 8X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, Energy Environ. Sci. 2011, 4, 2736–2753.
- 9
- 9aL. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang, S. Dong, J. Am. Chem. Soc. 2018, 140, 1142–1147;
- 9bQ. Jiang, L. Jiang, S. Wang, J. Qi, G. Sun, Catal. Commun. 2010, 12, 67–70;
- 9cP. Ferrari, L. M. Molina, V. E. Kaydashev, J. A. Alonso, P. Lievens, E. Janssens, Angew. Chem. Int. Ed. 2016, 55, 11059–11063; Angew. Chem. 2016, 128, 11225–11229;
- 9dJ. J. Baschuk, X. Li, Int. J. Energy Res. 2001, 25, 695–713.
- 10
- 10aZ. Luo, A. W. Castleman, S. N. Khanna, Chem. Rev. 2016, 116, 14456–14492;
- 10bK. R. Asmis, A. Fielicke, Top. Catal. 2018, 61, 1–2;
- 10cY.-X. Zhao, Z.-Y. Li, Y. Yang, S.-G. He, Acc. Chem. Res. 2018, 51, 2603–2610;
- 10dS. M. Lang, T. M. Bernhardt, Phys. Chem. Chem. Phys. 2012, 14, 9255–9269.
- 11E. Jimenez-Izal, A. N. Alexandrova, Annu. Rev. Phys. Chem. 2018, 69, 377–400.
- 12
- 12aE. F. Fialko, A. V. Kikhtenko, V. B. Goncharov, K. I. Zamaraev, J. Phys. Chem. B 1997, 101, 5772–5773;
- 12bD. R. Justes, N. A. Moore, A. W. Castleman, J. Phys. Chem. B 2004, 108, 3855–3862;
- 12cM. Engeser, D. Schröder, H. Schwarz, Chem. Eur. J. 2005, 11, 5975–5987.
- 13
- 13aV. Canale, A. Zavras, G. N. Khairallah, N. d'Alessandro, R. A. J. O'Hair, Eur. J. Mass Spectrom. 2015, 21, 557–567;
- 13bT. Waters, R. A. J. O'Hair, A. G. Wedd, J. Am. Chem. Soc. 2003, 125, 3384–3396;
- 13cM. C. Oliveira, J. Marçalo, M. C. Vieira, M. A. A. Ferreiraac, Int. J. Mass Spectrom. 1999, 185–187, 825–835;
- 13dT. Waters, A. G. Wedd, R. A. J. O'Hair, Chem. Eur. J. 2007, 13, 8818–8829;
- 13eM. del Carmen Michelini, J. Marçalo, N. Russo, J. K. Gibson, Inorg. Chem. 2010, 49, 3836–3850;
- 13fS. E. Waller, C. C. Jarrold, J. Phys. Chem. A 2014, 118, 8493–8504;
- 13gM. Ray, S. E. Waller, C. C. Jarrold, J. Phys. Chem. A 2016, 120, 1508–1519.
- 14
- 14aY. Xie, F. Dong, S. Heinbuch, J. J. Rocca, E. R. Bernstein, J. Chem. Phys. 2009, 130, 114306;
- 14bF. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, E. R. Bernstein, J. Phys. Chem. A 2009, 113, 3029–3040.
- 15N. M. Reilly, G. E. Johnson, A. W. Castleman, in Model Systems in Catalysis: Single Crystals to Supported Enzyme Mimics (Ed.: R. Rioux), Springer New York, New York, 2010, pp. 293–317.
10.1007/978-0-387-98049-2_14 Google Scholar
- 16
- 16aJ. Döbler, M. Pritzsche, J. Sauer, J. Am. Chem. Soc. 2005, 127, 10861–10868;
- 16bP. González-Navarrete, J. Andrés, M. Calatayud, J. Phys. Chem. A 2018, 122, 1104–1113.
- 17
- 17aS. Feyel, D. Schröder, H. Schwarz, J. Phys. Chem. A 2009, 113, 5625–5632;
- 17bS. Hirabayashi, R. Okawa, M. Ichihashi, T. Kondow, Y. Kawazoe, J. Phys. Chem. A 2007, 111, 7664–7669;
- 17cÅ. M. L. Øiestad, E. Uggerud, Chem. Phys. 2000, 262, 169–177;
- 17dM. B. Knickelbein, J. Chem. Phys. 1996, 104, 3517–3525;
- 17eM. Ichihashi, C. A. Corbett, T. Hanmura, J. M. Lisy, T. Kondow, J. Phys. Chem. A 2005, 109, 7872–7880;
- 17fM. B. Knickelbein, G. M. Koretsky, J. Phys. Chem. A 1998, 102, 580–586;
- 17gA. C. Reber, P. J. Roach, W. H. Woodward, S. N. Khanna, A. W. Castleman, J. Phys. Chem. A 2012, 116, 8085–8091.
- 18P. Ferrari, J. Vanbuel, Y. Li, T.-W. Liao, E. Janssens, P. Lievens in Gas-Phase Synthesis of Nanoparticles (Ed.: Y. Huttel), Wiley-VCH, Weinheim, 2017, pp. 59–78.
10.1002/9783527698417.ch4 Google Scholar
- 19T. Su, W. J. Chesnavich, J. Chem. Phys. 1982, 76, 5183–5185.
- 20C. Ratsch, A. Fielicke, A. Kirilyuk, J. Behler, G. von Helden, G. Meijer, M. Scheffler, J. Chem. Phys. 2005, 122, 124302.
- 21
- 21aD. A. Hales, C.-X. Su, L. Lian, P. B. Armentrout, J. Chem. Phys. 1994, 100, 1049;
- 21bC.-X. Su, D. A. Hales, P. B. Armentrout, J. Chem. Phys. 1993, 99, 6613.
- 22M. L. Anderson, A. Lacz, T. Drewello, P. J. Derrick, D. P. Woodruff, S. R. Mackenzie, J. Chem. Phys. 2009, 130, 064305.
- 23Y. Shao, Z. Gan, E. Epifanovsky, et al., Mol. Phys. 2015, 113, 184–215.
- 24Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian, Inc., Wallingford CT, 2016.
- 25R. Z. Khaliullin, E. A. Cobar, R. C. Lochan, A. T. Bell, M. Head-Gordon, J. Phys. Chem. A 2007, 111, 8753–8765.
- 26J. Barabás, J. Vanbuel, P. Ferrari, E. Janssens, T. Höltzl, Chem. Eur. J. 2019, 25, 15795–15804.
- 27
- 27aS. Datta, M. Kabir, S. Ganguly, B. Sanyal, T. Saha-Dasgupta, A. Mookerjee, Phys. Rev. B 2007, 76, 014429;
- 27bR. Gehrke, P. Gruene, A. Fielicke, G. Meijer, K. Reuter, J. Chem. Phys. 2009, 130, 034306.
- 28G. J. Kubas, Chem. Rev. 2007, 107, 4152–4205.
- 29I. Swart, A. Fielicke, B. Redlich, G. Meijer, B. M. Weckhuysen, F. M. F. de Groot, J. Am. Chem. Soc. 2007, 129, 2516–2520.
- 30
- 30aA. Fielicke, G. von Helden, G. Meijer, D. B. Pedersen, B. Simard, D. M. Rayner, J. Chem. Phys. 2006, 124, 194305;
- 30bA. Fielicke, P. Gruene, G. Meijer, D. M. Rayner, Surf. Sci. 2009, 603, 1427–1433.
- 31P. Ferrin, A. U. Nilekar, J. Greeley, M. Mavrikakis, J. Rossmeisl, Surf. Sci. 2008, 602, 3424–3431.
- 32H. Schwarz, Angew. Chem. Int. Ed. 2015, 54, 10090–10100; Angew. Chem. 2015, 127, 10228–10239.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.