Fuzzy DNA Strand Displacement: A Strategy to Decrease the Complexity of DNA Network Design
Zhiyu Wang
Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorYingxin Hu
Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, 050043 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Linqiang Pan
Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorZhiyu Wang
Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorYingxin Hu
Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, 050043 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Linqiang Pan
Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorAbstract
Toehold-mediated DNA strand displacement endows DNA nanostructures with dynamic response capability. However, the complexity of sequence design dramatically increases as the size of the DNA network increases. We attribute this problem to the mechanism of toehold-mediated strand displacement, termed exact strand displacement (ESD), in which one input strand corresponds to one specific substrate. In this work, we propose an alternative to toehold-mediated DNA strand displacement, termed fuzzy strand displacement (FSD), in which one-to-many and many-to-one relationships are established between the input strand and the substrate, to reduce the complexity. We have constructed four modules, termed converter, reporter, fuzzy detector, and fuzzy trigger, and demonstrated that a sequence pattern recognition network composed of these modules requires less complex sequence design than an equivalent network based on toehold-mediated DNA strand displacement.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202005193-sup-0001-misc_information.pdf4.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. W. Rothemund, Nature 2006, 440, 297–302.
- 2F. Zhang, S. Jiang, S. Wu, Y. Li, C. Mao, Y. Liu, H. Yan, Nat. Nanotechnol. 2015, 10, 779–784.
- 3B. Wei, M. Dai, P. Yin, Nature 2012, 485, 623–626.
- 4Z. Liu, C. Tian, J. Yu, Y. Li, W. Jiang, C. Mao, J. Am. Chem. Soc. 2015, 137, 1730–1733.
- 5T. Gerling, K. F. Wagenbauer, A. M. Neuner, H. Dietz, Science 2015, 347, 1446–1452.
- 6H. Dietz, S. M. Douglas, W. M. Shih, Science 2009, 325, 725–730.
- 7T. G. W. Edwardson, K. L. Lau, D. Bousmail, C. J. Serpell, H. F. Sleiman, Nat. Chem. 2016, 8, 162–170.
- 8D. Han, S. Pal, J. Nangreave, Z. Deng, Y. Liu, H. Yan, Science 2011, 332, 342–346.
- 9F. Hong, S. Jiang, T. Wang, Y. Liu, H. Yan, Angew. Chem. Int. Ed. 2016, 55, 12832–12835; Angew. Chem. 2016, 128, 13024–13027.
- 10B. Yurke, A. J. Turberfield, J. A. Mills, F. C. Simmel, J. L. Neumann, Nature 2000, 406, 605–608.
- 11L. Qian, E. Winfree, Science 2011, 332, 1196–1201.
- 12G. Chatterjee, N. Dalchau, R. A. Muscat, A. Phillips, G. Seelig, Nat. Nanotechnol. 2017, 12, 920–927.
- 13L. Qian, E. Winfree, J. Bruck, Nature 2011, 475, 368–372.
- 14W. Li, Y. Yang, H. Yan, Y. Liu, Nano Lett. 2013, 13, 2980–2988.
- 15B. M. G. Janssen, M. van Rosmalen, L. van Beek, M. Merkx, Angew. Chem. Int. Ed. 2015, 54, 2530–2533; Angew. Chem. 2015, 127, 2560–2563.
- 16J. Chen, S. Zhou, J. Wen, Angew. Chem. Int. Ed. 2015, 54, 446–450; Angew. Chem. 2015, 127, 456–460.
- 17K. M. Cherry, L. Qian, Nature 2018, 559, 370–376.
- 18Y. Ke, T. Meyer, W. M. Shih, G. Bellot, Nat. Commun. 2016, 7, 10935.
- 19T. Song, S. Xiao, D. Yao, F. Huang, M. Hu, H. Liang, Adv. Mater. 2014, 26, 6181–6185.
- 20M. T. Hwang, P. B. Landon, J. Lee, D. Choi, A. H. Mo, G. Glinsky, R. Lal, Proc. Natl. Acad. Sci. USA 2016, 113, 7088–7093.
- 21M. You, G. Zhu, T. Chen, M. J. Donovan, W. Tan, J. Am. Chem. Soc. 2015, 137, 667–674.
- 22P. Yin, H. M. T. Choi, C. R. Calvert, N. A. Pierce, Nature 2008, 451, 318–322.
- 23C. Jung, P. B. Allen, A. D. Ellington, Nat. Nanotechnol. 2016, 11, 157–163.
- 24A. J. Thubagere, W. Li, R. F. Johnson, Z. Chen, S. Doroudi, Y. L. Lee, G. Izatt, S. Wittman, N. Srinivas, D. Woods, E. Winfree, L. Qian, Science 2017, 357, eaan6558.
- 25G. T. Walker, M. S. Fraiser, J. L. Schram, M. C. Little, J. G. Nadeau, D. P. Malinowski, Nucleic Acids Res. 1992, 20, 1691–1696.
- 26T. Notomi, Nucleic Acids Res. 2000, 28, 63e.
- 27M. M. Ali, F. Li, Z. Zhang, K. Zhang, D. Kang, J. A. Ankrum, X. C. Le, W. Zhao, Chem. Soc. Rev. 2014, 43, 3324.
- 28S. Sengupta, M. M. Spiering, K. K. Dey, W. Duan, D. Patra, P. J. Butler, R. D. Astumian, S. J. Benkovic, A. Sen, ACS Nano 2014, 8, 2410–2418.
- 29H. Su, J. Xu, Q. Wang, F. Wang, X. Zhou, Nat. Commun. 2019, 10, 5390.
- 30T. Song, A. Eshra, S. Shah, H. Bui, D. Fu, M. Yang, R. Mokhtar, J. Reif, Nat. Nanotechnol. 2019, 14, 1075–1081.
- 31A. Johnson-Buck, W. M. Shih, Nano Lett. 2017, 17, 7940–7944.
- 32A. Padirac, T. Fujii, Y. Rondelez, Proc. Natl. Acad. Sci. USA 2012, 109, E3212–E3220.
- 33L. H. H. Meijer, A. Joesaar, E. Steur, W. Engelen, R. A. van Santen, M. Merkx, T. F. A. de Greef, Nat. Commun. 2017, 8, 1117.
- 34T. Fujii, Y. Rondelez, ACS Nano 2013, 7, 27–34.
- 35C. Shi, X. Shen, S. Niu, C. Ma, J. Am. Chem. Soc. 2015, 137, 13804–13806.
- 36B. Shlyahovsky, D. Li, Y. Weizmann, R. Nowarski, M. Kotler, I. Willner, J. Am. Chem. Soc. 2007, 129, 3814–3815.
- 37K. Bebenek, C. M. Joyce, M. P. Fitzgerald, T. A. Kunkel, J. Biol. Chem. 1990, 265, 13878–13887.
- 38R. M. Zadegan, M. D. E. Jepsen, L. L. Hildebrandt, V. Birkedal, J. Kjems, Small 2015, 11, 1811–1817.
- 39W. T. Huang, J. R. Zhang, W. Y. Xie, Y. Shi, H. Q. Luo, N. B. Li, Biosens. Bioelectron. 2014, 57, 117–124.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.