Synthesis of Spirocyclic 1-Pyrrolines from Nitrones and Arynes through a Dearomative [3,3′]-Sigmatropic Rearrangement
Abdullah S. Alshreimi
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
These authors contributed equally to this work.
Search for more papers by this authorGuanqun Zhang
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
These authors contributed equally to this work.
Search for more papers by this authorTyler W. Reidl
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorRicardo L. Peña
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorNicholas-George Koto
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorDr. Shahidul M. Islam
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorDr. Donald J. Wink
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorCorresponding Author
Prof. Laura L. Anderson
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorAbdullah S. Alshreimi
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
These authors contributed equally to this work.
Search for more papers by this authorGuanqun Zhang
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
These authors contributed equally to this work.
Search for more papers by this authorTyler W. Reidl
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorRicardo L. Peña
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorNicholas-George Koto
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorDr. Shahidul M. Islam
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorDr. Donald J. Wink
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorCorresponding Author
Prof. Laura L. Anderson
Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
Search for more papers by this authorAbstract
A dearomative [3,3′]-sigmatropic rearrangement that converts N-alkenylbenzisoxazolines into spirocyclic pyrroline cyclohexadienones has been developed by using the dipolar cycloaddition of an N-alkenylnitrone and an aryne to access these unusual transient rearrangement precursors. This cascade reaction affords spirocyclic pyrrolines that are inaccessible through dipolar cycloadditions of exocyclic cyclohexenones and provides a fundamentally new approach to novel spirocyclic pyrroline and pyrrolidine motifs that are common scaffolds in biologically-active molecules. Diastereoselective functionalization processes have also been explored to demonstrate the divergent synthetic utility of the unsaturated spirocyclic products.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202004652-sup-0001-misc_information.pdf10.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Reviews of dearomative functionalization reactions:
- 1aS. P. Roche, J. A. Porco, Jr., Angew. Chem. Int. Ed. 2011, 50, 4068; Angew. Chem. 2011, 123, 4154;
- 1bC.-X. Zhuo, W. Zhang, S.-L. You, Angew. Chem. Int. Ed. 2012, 51, 12662; Angew. Chem. 2012, 124, 12834;
- 1cQ. Ding, Y. Ye, R. Fan, Synthesis 2013, 45, 1;
- 1dB. K. Liebov, W. D. Harman, Chem. Rev. 2017, 117, 13721;
- 1eW. C. Wertjes, E. H. Southgate, D. Sarlah, Chem. Soc. Rev. 2018, 47, 7996.
- 2Reviews on arenol and indole dearomatization reactions:
- 2aS. Quideau, L. Pouysegu, D. Deffieux, Synlett 2008, 467;
- 2bS. Quideau, L. Pouysegu, P. A. Laurent, D. Deffieux, Top. Curr. Chem. 2016, 373, 25;
- 2cT. Nemoto, Y. Hamada, Synlett 2016, 27, 2301;
- 2dS. P. Roche, J.-J. Youte Tendoung, B. Tréguier, Tetrahedron 2015, 71, 3549;
- 2eC. Zheng, S.-L. You, Nat. Prod. Rep. 2019, 36, 1589;
- 2fC. Zheng, S.-L. You, Chem 2016, 1, 830;
- 2gM. J. James, P. O'Brien, R. J. K. Taylor, W. P. Unsworth, Chem. Eur. J. 2016, 22, 2856.
- 3Examples of arenol and indole dearomative spirocyclizations:
- 3aQ.-F. Wu, W.-B. Liu, C.-X. Zhuo, Z.-Q. Rong, K.-Y. Ye, S.-L. You, Angew. Chem. Int. Ed. 2011, 50, 4455; Angew. Chem. 2011, 123, 4547;
- 3bJ. Y. Cha, L. Burnett IV, Y. Huang, J. B. Davidson, T. R. R. Pettus, J. Org. Chem. 2011, 76, 1361;
- 3cB. Su, M. Deng, Q. Wang, Org. Lett. 2013, 15, 1606;
- 3dA. K. Clarke, J. T. R. Liddon, J. D. Cuthbertson, R. J. K. Taylor, W. P. Unsworth, Org. Biomol. Chem. 2017, 15, 233;
- 3eH. Nakayama, S. Harada, M. Kono, T. Nemoto, J. Am. Chem. Soc. 2017, 139, 10188;
- 3fS. Tcyrulnikov, J. M. Curto, P. H. Gilmartin, M. C. Kozlowski, J. Org. Chem. 2018, 83, 12207;
- 3gM. Odagi, K. Okuda, H. Ishizuka, K. Adachi, Asian J. Org. Chem. 2020, 9, 218;
- 3hB. Heid, B. Plietker, Synthesis 2016, 48, 340;
- 3iJ. T. R. Liddon, J. A. Rossi-Ashton, R. J. K. Taylor, W. P. Unsworth, Org. Lett. 2018, 20, 3349;
- 3jM. J. James, J. D. Cuthbertson, P. O'Brien, R. J. K. Taylor, W. P. Unsworth, Angew. Chem. Int. Ed. 2015, 54, 7640; Angew. Chem. 2015, 127, 7750;
- 3kD. Ryzhakov, M. Jarret, R. Guillot, C. Kouklovsky, G. Vincent, Org. Lett. 2017, 19, 6336;
- 3lP. Fedoseev, E. Van der Eycken, Chem. Commun. 2017, 53, 7732;
- 3mS. Bera, C. G. Daniliuc, A. Studer, Angew. Chem. Int. Ed. 2017, 56, 7402; Angew. Chem. 2017, 129, 7508;
- 3nC.-X. Zhuo, Y. Zhou, Q. Cheng, L. Huang, S.-L. You, Angew. Chem. Int. Ed. 2015, 54, 14146; Angew. Chem. 2015, 127, 14352;
- 3oW.-T. Wu, L. Ding, L. Zhang, S.-L. You, Org. Lett. 2020, 22, 1233.
- 4Bioactive spirocyclic scaffolds:
- 4aY. Zheng, C. M. Tice, S. B. Singh, Bioorg. Med. Chem. Lett. 2014, 24, 3673;
- 4bG. Müller, T. Berkenbosch, J. C. J. Benningshof, D. Stumpfe, J. Bajorath, Chem. Eur. J. 2017, 23, 703;
- 4cY.-J. Zheng, C. M. Tice, Expert Opin. Drug Discovery 2016, 11, 831;
- 4dE. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257;
- 4eG. Periyasami, R. Raghunathan, G. Surendiran, N. Mathivanan, Bioorg. Med. Chem. Lett. 2008, 18, 2342;
- 4fR. S. Kumar, S. M. Rajesh, S. Perumal, D. Banerjee, P. Yogeeswari, D. Sriram, Eur. J. Med. Chem. 2010, 45, 411;
- 4gC. V. Galliford, K. A. Scheidt, Angew. Chem. Int. Ed. 2007, 46, 8748; Angew. Chem. 2007, 119, 8902;
- 4hG. S. Singh, Z. Y. Desta, Chem. Rev. 2012, 112, 6104;
- 4iJ. J. Badillo, N. V. Hanhan, A. K. Franz, Curr. Opin. Drug Discovery Dev. 2010, 13, 758.
- 5Dearomative [3,3′]-rearrangements:
- 5aM. T. Peruzzi, S. J. Lee, M. R. Gagné, Org. Lett. 2017, 19, 6256;
- 5bS. Huang, L. Kötzner, C. Kanta De, B. List, J. Am. Chem. Soc. 2015, 137, 3446;
- 5cT. Cao, E. C. Linton, J. Deitch, S. Berritt, M. C. Kozlowski, J. Org. Chem. 2012, 77, 11034;
- 5dH. Zheng, Y. Wang, C. Xu, X. Xu, L. Lin, X. Liu, X. Feng, Nat. Commun. 2018, 9, 1968;
- 5eE. C. Linton, M. C. Kozlowski, J. Am. Chem. Soc. 2008, 130, 16162;
- 5fT. Cao, J. Deitch, E. C. Linton, M. C. Kozlowski, Angew. Chem. Int. Ed. 2012, 51, 2448; Angew. Chem. 2012, 124, 2498.
- 6For an example of a dearomative Claisen rearrangement that forms a quaternary carbon stereocenter and can be subsequently cyclized to a spirocycle, see Ref. [5c].
- 7D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher, A. G. Doyle, Science 2018, 360, 186.
- 8C. Lu, A. V. Dubrovskiy, R. C. Larock, J. Org. Chem. 2012, 77, 2279.
- 9
- 9aT. W. Reidl, J. Son, D. J. Wink, L. L. Anderson, Angew. Chem. Int. Ed. 2017, 56, 11579; Angew. Chem. 2017, 129, 11737;
- 9bJ. Son, K. H. Kim, D.-L. Mo, D. J. Wink, L. L. Anderson, Angew. Chem. Int. Ed. 2017, 56, 3059; Angew. Chem. 2017, 129, 3105.
- 10Dipolar cycloaddition approaches to spirocyclic cyclohexanone pyrrolines:
- 10aZ.-W. Guo, X. Huang, J.-M. Mao, W.-D. Zhu, J.-W. Xie, RSC Adv. 2013, 3, 25103;
- 10bM. P. Balu, H. Ila, H. Junjappa, Tetrahedron 1990, 46, 6771.
- 11Related approaches to spirocyclic cyclohexanone pyrrolidines:
- 11aX. Fang, C.-J. Wang, Org. Biomol. Chem. 2018, 16, 2591;
- 11bL. Zhu, X. Ren, Z. Liao, J. Pan, C. Jiang, T. Wang, Org. Lett. 2019, 21, 8667;
- 11cM. Zhi, Z. Gan, R. Ma, H. Cui, E.-Q. Li, Z. Duan, F. Mathey, Org. Lett. 2019, 21, 3210;
- 11dD. Kowalczyk, J. Wojciechowski, L. Albrecht, Synthesis 2017, 49, 880;
- 11eB. Bdiri, C. Li, Z.-M. Zhou, Tetrahedron: Asymmetry 2017, 28, 1044;
- 11fT.-L. Liu, Z.-L. He, Q.-H. Li, H.-Y. Tao, C.-J. Wang, Adv. Synth. Catal. 2011, 353, 1713;
- 11gA. A. Raj, R. Raghunathan, Synth. Commun. 2002, 32, 3295;
- 11hG. A. Kraus, J. O. Nagy, Tetrahedron 1985, 41, 3537.
- 12A recent example of copper catalysis reversing dipolar cycloaddition regioselectivity with alkylidene norcamphors: C. Shen, Y. Yang, L. Wei, W.-W. Dong, L. W. Chung, C.-J. Wang, iScience 2019, 11, 146.
- 13CCDC 1990756, 1990757, and 1990755 (4 a, 4 n, and 5 a, respectively) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 14A related dipolar cycloaddition and rearrangement process: Y. Tomioka, C. Nagahiro, Y. Nomura, H. Maruoka, J. Heterocycl. Chem. 2003, 40, 121.
- 15See the Supporting Information for a full optimization table, details regarding computational studies, formation of 3 through the cycloaddition of a sterically hindered N-alkenylnitrone, and proposed rearomatization mechanisms.
- 16Discussions of the regioselectivity of nucleophilic additions to indolynes:
- 16aG.-Y. J. Im, S. M. Bronner, A. D. Goetz, R. S. Paton, P. H.-Y. Cheong, K. N. Houk, N. K. Garg, J. Am. Chem. Soc. 2010, 132, 17933;
- 16bP. H.-Y. Cheong, R. S. Paton, S. M. Bronner, G.-Y. J. Im, N. K. Garg, K. N. Houk, J. Am. Chem. Soc. 2010, 132, 1267.
- 17Related spirocyclic rearrangements:
- 17aJ. T. R. Liddon, M. J. James, A. K. Clarke, P. O'Brien, R. J. K. Taylor, W. P. Unsworth, Chem. Eur. J. 2016, 22, 8777;
- 17bL. Liu, Z. Wang, F. Zhao, Z. Xi, J. Org. Chem. 2007, 72, 3484;
- 17cR. G. Epton, A. K. Clarke, R. J. K. Taylor, W. P. Unsworth, J. M. Lynam, Eur. J. Org. Chem. 2019, 5563;
- 17dP.-F. Wang, C. Chen, H. Chen, L.-S. Han, L. Liu, H. Sun, X. Wen, Q.-L. Xu, Adv. Synth. Catal. 2017, 359, 2339.
- 18A 3:1 mixture of 5 e/6 b was observed after heating a solution of 4 n. This suggests that the formation of 5 is also dependent on the nitrone N-alkenyl substitution pattern. See the Supporting Information for details.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.